Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-12 Structured version   GIF version

Theorem ax-12 1336
 Description: Rederive the original version of the axiom from ax-i12 1332. (Contributed by Mario Carneiro, 3-Feb-2015.)
Assertion
Ref Expression
ax-12 z z = x → (¬ z z = y → (x = yz x = y)))

Proof of Theorem ax-12
StepHypRef Expression
1 ax-i12 1332 . . . 4 (z z = x (z z = y z(x = yz x = y)))
21ori 620 . . 3 z z = x → (z z = y z(x = yz x = y)))
32ord 621 . 2 z z = x → (¬ z z = yz(x = yz x = y)))
4 ax-4 1334 . 2 (z(x = yz x = y) → (x = yz x = y))
53, 4syl6 27 1 z z = x → (¬ z z = y → (x = yz x = y)))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 608  ∀wal 1267   = wceq 1325 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 97  ax-ia2 98  ax-ia3 99  ax-in2 528  ax-io 609  ax-i12 1332  ax-4 1334 This theorem depends on definitions:  df-bi 108
 Copyright terms: Public domain W3C validator