PART 1  FIRST ORDER LOGIC WITH EQUALITY
1.1  Pre-logic
1.2  Propositional calculus
1.3  Predicate calculus mostly without distinct variables
1.4  Predicate calculus with distinct variables
PART 2  SET THEORY
PART 3  CLASSICAL LOGIC
3.1  Classical (not intuitionistic) results

PART 1  FIRST ORDER LOGIC WITH EQUALITY
1.1  Pre-logic
1.1.1  Inferences for assisting proof development   dummylink 1
1.2  Propositional calculus
1.2.1  Recursively define primitive wffs for propositional calculus   wn 3
1.2.2  Propositional logic axioms for implication   ax-1 5
1.2.3  Logical implication   mp2b 8
1.2.4  Logical conjunction and logical equivalence   wa 95
1.2.5  Logical negation (intuitionistic)   ax-in1 527
1.2.6  Logical disjunction   wo 608
1.2.7  Decidable propositions   wdc 717
1.2.8  Theorems of decidable propositions   condc 723
1.2.9  Miscellaneous theorems of propositional calculus   pm5.21nd 787
1.2.10  Abbreviated conjunction and disjunction of three wff's   w3o 842
1.2.11  True and false constants   wtru 1188
1.2.12  Logical 'xor'   wxo 1207
1.2.13  Operations on true and false constants   truantru 1225
1.2.14  Stoic logic indemonstrables (Chrysippus of Soli)   mpto1 1247
1.2.15  Auxiliary theorems for Alan Sare's virtual deduction tool, part 1   ee22 1251
1.3  Predicate calculus mostly without distinct variables
1.3.1  Equality-free predicate calculus axioms ax-5, ax-7, ax-gen   wal 1267
1.3.2  Introduce equality axioms   cv 1324
1.3.3  Axiom ax-17 - first use of the \$d distinct variable statement   ax-17 1352
1.3.4  Introduce Axiom of Existence   ax-i9 1356
1.3.5  Additional intuitionistic axioms   ax-ial 1361
1.3.6  Predicate calculus including ax-4, without distinct variables   a4i 1363
1.3.7  The existential quantifier   19.8a 1413
1.3.8  Equality theorems without distinct variables   a9e 1501
1.3.9  Axioms ax-10 and ax-11   ax10o 1516
1.3.10  Substitution (without distinct variables)   wsbc 1555
1.3.11  Theorems using axiom ax-11   equs5a 1585
1.4  Predicate calculus with distinct variables
1.4.1  Derive the axiom of distinct variables ax-16   a4imv 1602
1.4.2  Derive the obsolete axiom of variable substitution ax-11o   ax11o 1613
1.4.3  More theorems related to ax-11 and substitution   albidv 1615
1.4.4  Predicate calculus with distinct variables (cont.)   ax16i 1647
1.4.5  More substitution theorems   hbs1 1719
1.4.6  Existential uniqueness   weu 1804
PART 2  SET THEORY
2.1.1  Introduce the Axiom of Extensionality   ax-ext 1850
2.1.2  Class abstractions (a.k.a. class builders)   cab 1853
2.1.3  Class form not-free predicate   wnfc 1990
2.1.4  Negated equality and membership   wne 2029
2.1.4.1  Negated equality   nnedc 2033
2.1.4.2  Negated membership   neleq1 2114
2.1.5  Restricted quantification   wral 2119
2.1.6  The universal class   cvv 2361
PART 3  CLASSICAL LOGIC
3.0.1  Classical logic theorems   ax-3 2512
3.0.2  Existential uniqueness (supplemental)   mo 2548
3.1  Classical (not intuitionistic) results
3.1.1  Additional substitution theorems (classical)   dfsb2 2621
3.1.2  Exclusive or and related theorems (classical)   xordi 2623

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2623
 Copyright terms: Public domain < Wrap  Next >