Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0dioph Structured version   Unicode version

Theorem 0dioph 26837
Description: The null set is Diophantine. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
0dioph  |-  ( A  e.  NN0  ->  (/)  e.  (Dioph `  A ) )

Proof of Theorem 0dioph
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 ax-1ne0 9059 . . . . 5  |-  1  =/=  0
2 df-ne 2601 . . . . 5  |-  ( 1  =/=  0  <->  -.  1  =  0 )
31, 2mpbi 200 . . . 4  |-  -.  1  =  0
43rgenw 2773 . . 3  |-  A. a  e.  ( NN0  ^m  (
1 ... A ) )  -.  1  =  0
5 rabeq0 3649 . . 3  |-  ( { a  e.  ( NN0 
^m  ( 1 ... A ) )  |  1  =  0 }  =  (/)  <->  A. a  e.  ( NN0  ^m  ( 1 ... A ) )  -.  1  =  0 )
64, 5mpbir 201 . 2  |-  { a  e.  ( NN0  ^m  ( 1 ... A
) )  |  1  =  0 }  =  (/)
7 ovex 6106 . . . 4  |-  ( 1 ... A )  e. 
_V
8 1z 10311 . . . 4  |-  1  e.  ZZ
9 mzpconstmpt 26797 . . . 4  |-  ( ( ( 1 ... A
)  e.  _V  /\  1  e.  ZZ )  ->  ( a  e.  ( ZZ  ^m  ( 1 ... A ) ) 
|->  1 )  e.  (mzPoly `  ( 1 ... A
) ) )
107, 8, 9mp2an 654 . . 3  |-  ( a  e.  ( ZZ  ^m  ( 1 ... A
) )  |->  1 )  e.  (mzPoly `  (
1 ... A ) )
11 eq0rabdioph 26835 . . 3  |-  ( ( A  e.  NN0  /\  ( a  e.  ( ZZ  ^m  ( 1 ... A ) ) 
|->  1 )  e.  (mzPoly `  ( 1 ... A
) ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... A ) )  |  1  =  0 }  e.  (Dioph `  A ) )
1210, 11mpan2 653 . 2  |-  ( A  e.  NN0  ->  { a  e.  ( NN0  ^m  ( 1 ... A
) )  |  1  =  0 }  e.  (Dioph `  A ) )
136, 12syl5eqelr 2521 1  |-  ( A  e.  NN0  ->  (/)  e.  (Dioph `  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   {crab 2709   _Vcvv 2956   (/)c0 3628    e. cmpt 4266   ` cfv 5454  (class class class)co 6081    ^m cmap 7018   0cc0 8990   1c1 8991   NN0cn0 10221   ZZcz 10282   ...cfz 11043  mzPolycmzp 26779  Diophcdioph 26813
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-n0 10222  df-z 10283  df-uz 10489  df-fz 11044  df-mzpcl 26780  df-mzp 26781  df-dioph 26814
  Copyright terms: Public domain W3C validator