MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0frgp Unicode version

Theorem 0frgp 15088
Description: The free group on zero generators is trivial. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
0frgp.g  |-  G  =  (freeGrp `  (/) )
0frgp.b  |-  B  =  ( Base `  G
)
Assertion
Ref Expression
0frgp  |-  B  ~~  1o

Proof of Theorem 0frgp
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mptresid 5004 . . . . . . . 8  |-  ( x  e.  B  |->  x )  =  (  _I  |`  B )
2 0ex 4150 . . . . . . . . . . . 12  |-  (/)  e.  _V
3 0frgp.g . . . . . . . . . . . . 13  |-  G  =  (freeGrp `  (/) )
43frgpgrp 15071 . . . . . . . . . . . 12  |-  ( (/)  e.  _V  ->  G  e.  Grp )
52, 4ax-mp 8 . . . . . . . . . . 11  |-  G  e. 
Grp
6 f0 5425 . . . . . . . . . . 11  |-  (/) : (/) --> B
7 0frgp.b . . . . . . . . . . . 12  |-  B  =  ( Base `  G
)
8 eqid 2283 . . . . . . . . . . . . . . . 16  |-  ( ~FG  `  (/) )  =  ( ~FG  `  (/) )
9 eqid 2283 . . . . . . . . . . . . . . . 16  |-  (varFGrp `  (/) )  =  (varFGrp `  (/) )
108, 9, 3, 7vrgpf 15077 . . . . . . . . . . . . . . 15  |-  ( (/)  e.  _V  ->  (varFGrp `  (/) ) : (/) --> B )
11 ffn 5389 . . . . . . . . . . . . . . 15  |-  ( (varFGrp `  (/) ) : (/) --> B  -> 
(varFGrp `  (/) )  Fn  (/) )
122, 10, 11mp2b 9 . . . . . . . . . . . . . 14  |-  (varFGrp `  (/) )  Fn  (/)
13 fn0 5363 . . . . . . . . . . . . . 14  |-  ( (varFGrp `  (/) )  Fn  (/)  <->  (varFGrp `  (/) )  =  (/) )
1412, 13mpbi 199 . . . . . . . . . . . . 13  |-  (varFGrp `  (/) )  =  (/)
1514eqcomi 2287 . . . . . . . . . . . 12  |-  (/)  =  (varFGrp `  (/) )
163, 7, 15frgpup3 15087 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  (/) 
e.  _V  /\  (/) : (/) --> B )  ->  E! f  e.  ( G  GrpHom  G ) ( f  o.  (/) )  =  (/) )
175, 2, 6, 16mp3an 1277 . . . . . . . . . 10  |-  E! f  e.  ( G  GrpHom  G ) ( f  o.  (/) )  =  (/)
18 reurmo 2755 . . . . . . . . . 10  |-  ( E! f  e.  ( G 
GrpHom  G ) ( f  o.  (/) )  =  (/)  ->  E* f  e.  ( G  GrpHom  G ) ( f  o.  (/) )  =  (/) )
1917, 18ax-mp 8 . . . . . . . . 9  |-  E* f  e.  ( G  GrpHom  G ) ( f  o.  (/) )  =  (/)
207idghm 14698 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  (  _I  |`  B )  e.  ( G  GrpHom  G ) )
215, 20ax-mp 8 . . . . . . . . . 10  |-  (  _I  |`  B )  e.  ( G  GrpHom  G )
22 tru 1312 . . . . . . . . . 10  |-  T.
2321, 22pm3.2i 441 . . . . . . . . 9  |-  ( (  _I  |`  B )  e.  ( G  GrpHom  G )  /\  T.  )
24 eqid 2283 . . . . . . . . . . . 12  |-  ( 0g
`  G )  =  ( 0g `  G
)
2524, 70ghm 14697 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  G  e.  Grp )  ->  ( B  X.  {
( 0g `  G
) } )  e.  ( G  GrpHom  G ) )
265, 5, 25mp2an 653 . . . . . . . . . 10  |-  ( B  X.  { ( 0g
`  G ) } )  e.  ( G 
GrpHom  G )
2726, 22pm3.2i 441 . . . . . . . . 9  |-  ( ( B  X.  { ( 0g `  G ) } )  e.  ( G  GrpHom  G )  /\  T.  )
28 co02 5186 . . . . . . . . . . . 12  |-  ( f  o.  (/) )  =  (/)
2928bitru 1317 . . . . . . . . . . 11  |-  ( ( f  o.  (/) )  =  (/) 
<->  T.  )
3029a1i 10 . . . . . . . . . 10  |-  ( f  =  (  _I  |`  B )  ->  ( ( f  o.  (/) )  =  (/)  <->  T.  ) )
3129a1i 10 . . . . . . . . . 10  |-  ( f  =  ( B  X.  { ( 0g `  G ) } )  ->  ( ( f  o.  (/) )  =  (/)  <->  T.  ) )
3230, 31rmoi 3080 . . . . . . . . 9  |-  ( ( E* f  e.  ( G  GrpHom  G ) ( f  o.  (/) )  =  (/)  /\  ( (  _I  |`  B )  e.  ( G  GrpHom  G )  /\  T.  )  /\  (
( B  X.  {
( 0g `  G
) } )  e.  ( G  GrpHom  G )  /\  T.  ) )  ->  (  _I  |`  B )  =  ( B  X.  { ( 0g `  G ) } ) )
3319, 23, 27, 32mp3an 1277 . . . . . . . 8  |-  (  _I  |`  B )  =  ( B  X.  { ( 0g `  G ) } )
34 fconstmpt 4732 . . . . . . . 8  |-  ( B  X.  { ( 0g
`  G ) } )  =  ( x  e.  B  |->  ( 0g
`  G ) )
351, 33, 343eqtri 2307 . . . . . . 7  |-  ( x  e.  B  |->  x )  =  ( x  e.  B  |->  ( 0g `  G ) )
36 mpteqb 5614 . . . . . . . 8  |-  ( A. x  e.  B  x  e.  B  ->  ( ( x  e.  B  |->  x )  =  ( x  e.  B  |->  ( 0g
`  G ) )  <->  A. x  e.  B  x  =  ( 0g `  G ) ) )
37 id 19 . . . . . . . 8  |-  ( x  e.  B  ->  x  e.  B )
3836, 37mprg 2612 . . . . . . 7  |-  ( ( x  e.  B  |->  x )  =  ( x  e.  B  |->  ( 0g
`  G ) )  <->  A. x  e.  B  x  =  ( 0g `  G ) )
3935, 38mpbi 199 . . . . . 6  |-  A. x  e.  B  x  =  ( 0g `  G )
4039rspec 2607 . . . . 5  |-  ( x  e.  B  ->  x  =  ( 0g `  G ) )
41 elsn 3655 . . . . 5  |-  ( x  e.  { ( 0g
`  G ) }  <-> 
x  =  ( 0g
`  G ) )
4240, 41sylibr 203 . . . 4  |-  ( x  e.  B  ->  x  e.  { ( 0g `  G ) } )
4342ssriv 3184 . . 3  |-  B  C_  { ( 0g `  G
) }
447, 24grpidcl 14510 . . . . 5  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  B )
455, 44ax-mp 8 . . . 4  |-  ( 0g
`  G )  e.  B
46 snssi 3759 . . . 4  |-  ( ( 0g `  G )  e.  B  ->  { ( 0g `  G ) }  C_  B )
4745, 46ax-mp 8 . . 3  |-  { ( 0g `  G ) }  C_  B
4843, 47eqssi 3195 . 2  |-  B  =  { ( 0g `  G ) }
49 fvex 5539 . . 3  |-  ( 0g
`  G )  e. 
_V
5049ensn1 6925 . 2  |-  { ( 0g `  G ) }  ~~  1o
5148, 50eqbrtri 4042 1  |-  B  ~~  1o
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    T. wtru 1307    = wceq 1623    e. wcel 1684   A.wral 2543   E!wreu 2545   E*wrmo 2546   _Vcvv 2788    C_ wss 3152   (/)c0 3455   {csn 3640   class class class wbr 4023    e. cmpt 4077    _I cid 4304    X. cxp 4687    |` cres 4691    o. ccom 4693    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   1oc1o 6472    ~~ cen 6860   Basecbs 13148   0gc0g 13400   Grpcgrp 14362    GrpHom cghm 14680   ~FG cefg 15015  freeGrpcfrgp 15016  varFGrpcvrgp 15017
This theorem is referenced by:  frgpcyg  16527
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-ot 3650  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-ec 6662  df-qs 6666  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-word 11409  df-concat 11410  df-s1 11411  df-substr 11412  df-splice 11413  df-reverse 11414  df-s2 11498  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-0g 13404  df-gsum 13405  df-imas 13411  df-divs 13412  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-frmd 14471  df-vrmd 14472  df-grp 14489  df-minusg 14490  df-ghm 14681  df-efg 15018  df-frgp 15019  df-vrgp 15020
  Copyright terms: Public domain W3C validator