MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0g0 Structured version   Unicode version

Theorem 0g0 14714
Description: The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015.)
Assertion
Ref Expression
0g0  |-  (/)  =  ( 0g `  (/) )

Proof of Theorem 0g0
Dummy variables  e  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 base0 13511 . . 3  |-  (/)  =  (
Base `  (/) )
2 eqid 2438 . . 3  |-  ( +g  `  (/) )  =  ( +g  `  (/) )
3 eqid 2438 . . 3  |-  ( 0g
`  (/) )  =  ( 0g `  (/) )
41, 2, 3grpidval 14712 . 2  |-  ( 0g
`  (/) )  =  ( iota e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) )
5 noel 3634 . . . . . 6  |-  -.  e  e.  (/)
65intnanr 883 . . . . 5  |-  -.  (
e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )
76nex 1565 . . . 4  |-  -.  E. e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )
8 euex 2306 . . . 4  |-  ( E! e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )  ->  E. e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) )
97, 8mto 170 . . 3  |-  -.  E! e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )
10 iotanul 5436 . . 3  |-  ( -.  E! e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) )  -> 
( iota e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) )  =  (/) )
119, 10ax-mp 5 . 2  |-  ( iota e ( e  e.  (/)  /\  A. x  e.  (/)  ( ( e ( +g  `  (/) ) x )  =  x  /\  ( x ( +g  `  (/) ) e )  =  x ) ) )  =  (/)
124, 11eqtr2i 2459 1  |-  (/)  =  ( 0g `  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726   E!weu 2283   A.wral 2707   (/)c0 3630   iotacio 5419   ` cfv 5457  (class class class)co 6084   +g cplusg 13534   0gc0g 13728
This theorem is referenced by:  frmd0  14810  rngidval  15671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-iota 5421  df-fun 5459  df-fv 5465  df-ov 6087  df-slot 13478  df-base 13479  df-0g 13732
  Copyright terms: Public domain W3C validator