MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0hashbc Unicode version

Theorem 0hashbc 13330
Description: There are no subsets of the empty set with size greater than zero. (Contributed by Mario Carneiro, 22-Apr-2015.)
Hypothesis
Ref Expression
ramval.c  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
Assertion
Ref Expression
0hashbc  |-  ( N  e.  NN  ->  ( (/) C N )  =  (/) )
Distinct variable groups:    a, b,
i    N, a, i
Allowed substitution hints:    C( i, a, b)    N( b)

Proof of Theorem 0hashbc
StepHypRef Expression
1 0fin 7295 . . . 4  |-  (/)  e.  Fin
2 nnnn0 10184 . . . 4  |-  ( N  e.  NN  ->  N  e.  NN0 )
3 ramval.c . . . . 5  |-  C  =  ( a  e.  _V ,  i  e.  NN0  |->  { b  e.  ~P a  |  ( # `  b
)  =  i } )
43hashbc2 13329 . . . 4  |-  ( (
(/)  e.  Fin  /\  N  e.  NN0 )  ->  ( # `
 ( (/) C N ) )  =  ( ( # `  (/) )  _C  N ) )
51, 2, 4sylancr 645 . . 3  |-  ( N  e.  NN  ->  ( # `
 ( (/) C N ) )  =  ( ( # `  (/) )  _C  N ) )
6 hash0 11601 . . . . 5  |-  ( # `  (/) )  =  0
76oveq1i 6050 . . . 4  |-  ( (
# `  (/) )  _C  N )  =  ( 0  _C  N )
8 bc0k 11557 . . . 4  |-  ( N  e.  NN  ->  (
0  _C  N )  =  0 )
97, 8syl5eq 2448 . . 3  |-  ( N  e.  NN  ->  (
( # `  (/) )  _C  N )  =  0 )
105, 9eqtrd 2436 . 2  |-  ( N  e.  NN  ->  ( # `
 ( (/) C N ) )  =  0 )
11 ovex 6065 . . 3  |-  ( (/) C N )  e.  _V
12 hasheq0 11599 . . 3  |-  ( (
(/) C N )  e.  _V  ->  (
( # `  ( (/) C N ) )  =  0  <->  ( (/) C N )  =  (/) ) )
1311, 12ax-mp 8 . 2  |-  ( (
# `  ( (/) C N ) )  =  0  <-> 
( (/) C N )  =  (/) )
1410, 13sylib 189 1  |-  ( N  e.  NN  ->  ( (/) C N )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1649    e. wcel 1721   {crab 2670   _Vcvv 2916   (/)c0 3588   ~Pcpw 3759   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   Fincfn 7068   0cc0 8946   NNcn 9956   NN0cn0 10177    _C cbc 11548   #chash 11573
This theorem is referenced by:  ramz2  13347
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445  df-rp 10569  df-fz 11000  df-seq 11279  df-fac 11522  df-bc 11549  df-hash 11574
  Copyright terms: Public domain W3C validator