MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ima Unicode version

Theorem 0ima 5189
Description: Image under the empty relation. (Contributed by FL, 11-Jan-2007.)
Assertion
Ref Expression
0ima  |-  ( (/) " A )  =  (/)

Proof of Theorem 0ima
StepHypRef Expression
1 imassrn 5183 . . 3  |-  ( (/) " A )  C_  ran  (/)
2 rn0 5094 . . 3  |-  ran  (/)  =  (/)
31, 2sseqtri 3348 . 2  |-  ( (/) " A )  C_  (/)
4 0ss 3624 . 2  |-  (/)  C_  ( (/) " A )
53, 4eqssi 3332 1  |-  ( (/) " A )  =  (/)
Colors of variables: wff set class
Syntax hints:    = wceq 1649   (/)c0 3596   ran crn 4846   "cima 4848
This theorem is referenced by:  gsumval3  15477  nghmfval  18717  isnghm  18718
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pr 4371
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-br 4181  df-opab 4235  df-xp 4851  df-cnv 4853  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858
  Copyright terms: Public domain W3C validator