MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0inp0 Unicode version

Theorem 0inp0 4182
Description: Something cannot be equal to both the null set and the power set of the null set. (Contributed by NM, 30-Sep-2003.)
Assertion
Ref Expression
0inp0  |-  ( A  =  (/)  ->  -.  A  =  { (/) } )

Proof of Theorem 0inp0
StepHypRef Expression
1 0nep0 4181 . . 3  |-  (/)  =/=  { (/)
}
2 neeq1 2454 . . 3  |-  ( A  =  (/)  ->  ( A  =/=  { (/) }  <->  (/)  =/=  { (/)
} ) )
31, 2mpbiri 224 . 2  |-  ( A  =  (/)  ->  A  =/= 
{ (/) } )
43neneqd 2462 1  |-  ( A  =  (/)  ->  -.  A  =  { (/) } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1623    =/= wne 2446   (/)c0 3455   {csn 3640
This theorem is referenced by:  dtruALT  4207  zfpair  4212  dtruALT2  4219
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-nul 4149
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-v 2790  df-dif 3155  df-nul 3456  df-sn 3646
  Copyright terms: Public domain W3C validator