HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  0lnfn Unicode version

Theorem 0lnfn 22565
Description: The identically zero function is a linear Hilbert space functional. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
0lnfn  |-  ( ~H 
X.  { 0 } )  e.  LinFn

Proof of Theorem 0lnfn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 8831 . . 3  |-  0  e.  CC
21fconst6 5431 . 2  |-  ( ~H 
X.  { 0 } ) : ~H --> CC
3 hvmulcl 21593 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( x  .h  y
)  e.  ~H )
4 hvaddcl 21592 . . . . . . 7  |-  ( ( ( x  .h  y
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z
)  e.  ~H )
53, 4sylan 457 . . . . . 6  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z )  e.  ~H )
6 c0ex 8832 . . . . . . 7  |-  0  e.  _V
76fvconst2 5729 . . . . . 6  |-  ( ( ( x  .h  y
)  +h  z )  e.  ~H  ->  (
( ~H  X.  {
0 } ) `  ( ( x  .h  y )  +h  z
) )  =  0 )
85, 7syl 15 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( ~H 
X.  { 0 } ) `  ( ( x  .h  y )  +h  z ) )  =  0 )
96fvconst2 5729 . . . . . . . . 9  |-  ( y  e.  ~H  ->  (
( ~H  X.  {
0 } ) `  y )  =  0 )
109oveq2d 5874 . . . . . . . 8  |-  ( y  e.  ~H  ->  (
x  x.  ( ( ~H  X.  { 0 } ) `  y
) )  =  ( x  x.  0 ) )
11 mul01 8991 . . . . . . . 8  |-  ( x  e.  CC  ->  (
x  x.  0 )  =  0 )
1210, 11sylan9eqr 2337 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( x  x.  (
( ~H  X.  {
0 } ) `  y ) )  =  0 )
136fvconst2 5729 . . . . . . 7  |-  ( z  e.  ~H  ->  (
( ~H  X.  {
0 } ) `  z )  =  0 )
1412, 13oveqan12d 5877 . . . . . 6  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  x.  ( ( ~H 
X.  { 0 } ) `  y ) )  +  ( ( ~H  X.  { 0 } ) `  z
) )  =  ( 0  +  0 ) )
15 00id 8987 . . . . . 6  |-  ( 0  +  0 )  =  0
1614, 15syl6eq 2331 . . . . 5  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  x.  ( ( ~H 
X.  { 0 } ) `  y ) )  +  ( ( ~H  X.  { 0 } ) `  z
) )  =  0 )
178, 16eqtr4d 2318 . . . 4  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( ~H 
X.  { 0 } ) `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  x.  ( ( ~H 
X.  { 0 } ) `  y ) )  +  ( ( ~H  X.  { 0 } ) `  z
) ) )
18173impa 1146 . . 3  |-  ( ( x  e.  CC  /\  y  e.  ~H  /\  z  e.  ~H )  ->  (
( ~H  X.  {
0 } ) `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  x.  (
( ~H  X.  {
0 } ) `  y ) )  +  ( ( ~H  X.  { 0 } ) `
 z ) ) )
1918rgen3 2640 . 2  |-  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( ( ~H  X.  { 0 } ) `
 ( ( x  .h  y )  +h  z ) )  =  ( ( x  x.  ( ( ~H  X.  { 0 } ) `
 y ) )  +  ( ( ~H 
X.  { 0 } ) `  z ) )
20 ellnfn 22463 . 2  |-  ( ( ~H  X.  { 0 } )  e.  LinFn  <->  (
( ~H  X.  {
0 } ) : ~H --> CC  /\  A. x  e.  CC  A. y  e.  ~H  A. z  e. 
~H  ( ( ~H 
X.  { 0 } ) `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  x.  ( ( ~H 
X.  { 0 } ) `  y ) )  +  ( ( ~H  X.  { 0 } ) `  z
) ) ) )
212, 19, 20mpbir2an 886 1  |-  ( ~H 
X.  { 0 } )  e.  LinFn
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   {csn 3640    X. cxp 4687   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   0cc0 8737    + caddc 8740    x. cmul 8742   ~Hchil 21499    +h cva 21500    .h csm 21501   LinFnclf 21534
This theorem is referenced by:  nmfn0  22567  lnfn0  22627  lnfnmul  22628  nmbdfnlb  22630  nmcfnex  22633  nmcfnlb  22634  lnfncon  22636  riesz4  22644  riesz1  22645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-hilex 21579  ax-hfvadd 21580  ax-hfvmul 21585
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-ltxr 8872  df-lnfn 22428
  Copyright terms: Public domain W3C validator