MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0lno Unicode version

Theorem 0lno 22252
Description: The zero operator is linear. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
0lno.0  |-  Z  =  ( U  0op  W
)
0lno.7  |-  L  =  ( U  LnOp  W
)
Assertion
Ref Expression
0lno  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  Z  e.  L )

Proof of Theorem 0lno
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2412 . . 3  |-  ( BaseSet `  U )  =  (
BaseSet `  U )
2 eqid 2412 . . 3  |-  ( BaseSet `  W )  =  (
BaseSet `  W )
3 0lno.0 . . 3  |-  Z  =  ( U  0op  W
)
41, 2, 30oo 22251 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  Z : ( BaseSet `  U
) --> ( BaseSet `  W
) )
5 simplll 735 . . . . . 6  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  U  e.  NrmCVec )
6 simpllr 736 . . . . . 6  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  W  e.  NrmCVec )
7 simplr 732 . . . . . . . 8  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  x  e.  CC )
8 simprl 733 . . . . . . . 8  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  y  e.  ( BaseSet `  U )
)
9 eqid 2412 . . . . . . . . 9  |-  ( .s
OLD `  U )  =  ( .s OLD `  U )
101, 9nvscl 22068 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  x  e.  CC  /\  y  e.  ( BaseSet `  U )
)  ->  ( x
( .s OLD `  U
) y )  e.  ( BaseSet `  U )
)
115, 7, 8, 10syl3anc 1184 . . . . . . 7  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( x
( .s OLD `  U
) y )  e.  ( BaseSet `  U )
)
12 simprr 734 . . . . . . 7  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  z  e.  ( BaseSet `  U )
)
13 eqid 2412 . . . . . . . 8  |-  ( +v
`  U )  =  ( +v `  U
)
141, 13nvgcl 22060 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  (
x ( .s OLD `  U ) y )  e.  ( BaseSet `  U
)  /\  z  e.  ( BaseSet `  U )
)  ->  ( (
x ( .s OLD `  U ) y ) ( +v `  U
) z )  e.  ( BaseSet `  U )
)
155, 11, 12, 14syl3anc 1184 . . . . . 6  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( (
x ( .s OLD `  U ) y ) ( +v `  U
) z )  e.  ( BaseSet `  U )
)
16 eqid 2412 . . . . . . 7  |-  ( 0vec `  W )  =  (
0vec `  W )
171, 16, 30oval 22250 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  ( (
x ( .s OLD `  U ) y ) ( +v `  U
) z )  e.  ( BaseSet `  U )
)  ->  ( Z `  ( ( x ( .s OLD `  U
) y ) ( +v `  U ) z ) )  =  ( 0vec `  W
) )
185, 6, 15, 17syl3anc 1184 . . . . 5  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( Z `  ( ( x ( .s OLD `  U
) y ) ( +v `  U ) z ) )  =  ( 0vec `  W
) )
191, 16, 30oval 22250 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  y  e.  ( BaseSet `  U )
)  ->  ( Z `  y )  =  (
0vec `  W )
)
205, 6, 8, 19syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( Z `  y )  =  (
0vec `  W )
)
2120oveq2d 6064 . . . . . . 7  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( x
( .s OLD `  W
) ( Z `  y ) )  =  ( x ( .s
OLD `  W )
( 0vec `  W )
) )
221, 16, 30oval 22250 . . . . . . . 8  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec  /\  z  e.  ( BaseSet `  U )
)  ->  ( Z `  z )  =  (
0vec `  W )
)
235, 6, 12, 22syl3anc 1184 . . . . . . 7  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( Z `  z )  =  (
0vec `  W )
)
2421, 23oveq12d 6066 . . . . . 6  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( (
x ( .s OLD `  W ) ( Z `
 y ) ) ( +v `  W
) ( Z `  z ) )  =  ( ( x ( .s OLD `  W
) ( 0vec `  W
) ) ( +v
`  W ) (
0vec `  W )
) )
25 eqid 2412 . . . . . . . . 9  |-  ( .s
OLD `  W )  =  ( .s OLD `  W )
2625, 16nvsz 22080 . . . . . . . 8  |-  ( ( W  e.  NrmCVec  /\  x  e.  CC )  ->  (
x ( .s OLD `  W ) ( 0vec `  W ) )  =  ( 0vec `  W
) )
276, 7, 26syl2anc 643 . . . . . . 7  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( x
( .s OLD `  W
) ( 0vec `  W
) )  =  (
0vec `  W )
)
2827oveq1d 6063 . . . . . 6  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( (
x ( .s OLD `  W ) ( 0vec `  W ) ) ( +v `  W ) ( 0vec `  W
) )  =  ( ( 0vec `  W
) ( +v `  W ) ( 0vec `  W ) ) )
292, 16nvzcl 22076 . . . . . . . 8  |-  ( W  e.  NrmCVec  ->  ( 0vec `  W
)  e.  ( BaseSet `  W ) )
306, 29syl 16 . . . . . . 7  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( 0vec `  W )  e.  (
BaseSet `  W ) )
31 eqid 2412 . . . . . . . 8  |-  ( +v
`  W )  =  ( +v `  W
)
322, 31, 16nv0rid 22077 . . . . . . 7  |-  ( ( W  e.  NrmCVec  /\  ( 0vec `  W )  e.  ( BaseSet `  W )
)  ->  ( ( 0vec `  W ) ( +v `  W ) ( 0vec `  W
) )  =  (
0vec `  W )
)
336, 30, 32syl2anc 643 . . . . . 6  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( ( 0vec `  W ) ( +v `  W ) ( 0vec `  W
) )  =  (
0vec `  W )
)
3424, 28, 333eqtrd 2448 . . . . 5  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( (
x ( .s OLD `  W ) ( Z `
 y ) ) ( +v `  W
) ( Z `  z ) )  =  ( 0vec `  W
) )
3518, 34eqtr4d 2447 . . . 4  |-  ( ( ( ( U  e.  NrmCVec 
/\  W  e.  NrmCVec )  /\  x  e.  CC )  /\  ( y  e.  ( BaseSet `  U )  /\  z  e.  ( BaseSet
`  U ) ) )  ->  ( Z `  ( ( x ( .s OLD `  U
) y ) ( +v `  U ) z ) )  =  ( ( x ( .s OLD `  W
) ( Z `  y ) ) ( +v `  W ) ( Z `  z
) ) )
3635ralrimivva 2766 . . 3  |-  ( ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  /\  x  e.  CC )  ->  A. y  e.  (
BaseSet `  U ) A. z  e.  ( BaseSet `  U ) ( Z `
 ( ( x ( .s OLD `  U
) y ) ( +v `  U ) z ) )  =  ( ( x ( .s OLD `  W
) ( Z `  y ) ) ( +v `  W ) ( Z `  z
) ) )
3736ralrimiva 2757 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  A. x  e.  CC  A. y  e.  ( BaseSet `  U ) A. z  e.  ( BaseSet
`  U ) ( Z `  ( ( x ( .s OLD `  U ) y ) ( +v `  U
) z ) )  =  ( ( x ( .s OLD `  W
) ( Z `  y ) ) ( +v `  W ) ( Z `  z
) ) )
38 0lno.7 . . 3  |-  L  =  ( U  LnOp  W
)
391, 2, 13, 31, 9, 25, 38islno 22215 . 2  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  ( Z  e.  L  <->  ( Z : ( BaseSet `  U
) --> ( BaseSet `  W
)  /\  A. x  e.  CC  A. y  e.  ( BaseSet `  U ) A. z  e.  ( BaseSet
`  U ) ( Z `  ( ( x ( .s OLD `  U ) y ) ( +v `  U
) z ) )  =  ( ( x ( .s OLD `  W
) ( Z `  y ) ) ( +v `  W ) ( Z `  z
) ) ) ) )
404, 37, 39mpbir2and 889 1  |-  ( ( U  e.  NrmCVec  /\  W  e.  NrmCVec )  ->  Z  e.  L )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2674   -->wf 5417   ` cfv 5421  (class class class)co 6048   CCcc 8952   NrmCVeccnv 22024   +vcpv 22025   BaseSetcba 22026   .s
OLDcns 22027   0veccn0v 22028    LnOp clno 22202    0op c0o 22205
This theorem is referenced by:  0blo  22254  nmlno0i  22256  blocn  22269
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-po 4471  df-so 4472  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-er 6872  df-map 6987  df-en 7077  df-dom 7078  df-sdom 7079  df-pnf 9086  df-mnf 9087  df-ltxr 9089  df-grpo 21740  df-gid 21741  df-ginv 21742  df-ablo 21831  df-vc 21986  df-nv 22032  df-va 22035  df-ba 22036  df-sm 22037  df-0v 22038  df-nmcv 22040  df-lno 22206  df-0o 22209
  Copyright terms: Public domain W3C validator