Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0ltat Unicode version

Theorem 0ltat 29481
Description: An atom is greater than zero. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
0ltat.z  |-  .0.  =  ( 0. `  K )
0ltat.s  |-  .<  =  ( lt `  K )
0ltat.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
0ltat  |-  ( ( K  e.  OP  /\  P  e.  A )  ->  .0.  .<  P )

Proof of Theorem 0ltat
StepHypRef Expression
1 simpl 443 . 2  |-  ( ( K  e.  OP  /\  P  e.  A )  ->  K  e.  OP )
2 eqid 2283 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
3 0ltat.z . . . 4  |-  .0.  =  ( 0. `  K )
42, 3op0cl 29374 . . 3  |-  ( K  e.  OP  ->  .0.  e.  ( Base `  K
) )
54adantr 451 . 2  |-  ( ( K  e.  OP  /\  P  e.  A )  ->  .0.  e.  ( Base `  K ) )
6 0ltat.a . . . 4  |-  A  =  ( Atoms `  K )
72, 6atbase 29479 . . 3  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
87adantl 452 . 2  |-  ( ( K  e.  OP  /\  P  e.  A )  ->  P  e.  ( Base `  K ) )
9 eqid 2283 . . 3  |-  (  <o  `  K )  =  ( 
<o  `  K )
103, 9, 6atcvr0 29478 . 2  |-  ( ( K  e.  OP  /\  P  e.  A )  ->  .0.  (  <o  `  K
) P )
11 0ltat.s . . 3  |-  .<  =  ( lt `  K )
122, 11, 9cvrlt 29460 . 2  |-  ( ( ( K  e.  OP  /\  .0.  e.  ( Base `  K )  /\  P  e.  ( Base `  K
) )  /\  .0.  (  <o  `  K ) P )  ->  .0.  .<  P )
131, 5, 8, 10, 12syl31anc 1185 1  |-  ( ( K  e.  OP  /\  P  e.  A )  ->  .0.  .<  P )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255   Basecbs 13148   ltcplt 14075   0.cp0 14143   OPcops 29362    <o ccvr 29452   Atomscatm 29453
This theorem is referenced by:  2atm2atN  29974  dia2dimlem2  31255  dia2dimlem3  31256
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-oposet 29366  df-covers 29456  df-ats 29457
  Copyright terms: Public domain W3C validator