MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ngrp Unicode version

Theorem 0ngrp 20878
Description: The empty set is not a group. (Contributed by NM, 25-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
0ngrp  |-  -.  (/)  e.  GrpOp

Proof of Theorem 0ngrp
StepHypRef Expression
1 neirr 2451 . 2  |-  -.  (/)  =/=  (/)
2 rn0 4936 . . . 4  |-  ran  (/)  =  (/)
32eqcomi 2287 . . 3  |-  (/)  =  ran  (/)
43grpon0 20869 . 2  |-  ( (/)  e.  GrpOp  ->  (/)  =/=  (/) )
51, 4mto 167 1  |-  -.  (/)  e.  GrpOp
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 1684    =/= wne 2446   (/)c0 3455   ran crn 4690   GrpOpcgr 20853
This theorem is referenced by:  zrdivrng  21099  vsfval  21191
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-ov 5861  df-grpo 20858
  Copyright terms: Public domain W3C validator