MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ngrp Unicode version

Theorem 0ngrp 21760
Description: The empty set is not a group. (Contributed by NM, 25-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
0ngrp  |-  -.  (/)  e.  GrpOp

Proof of Theorem 0ngrp
StepHypRef Expression
1 neirr 2580 . 2  |-  -.  (/)  =/=  (/)
2 rn0 5094 . . . 4  |-  ran  (/)  =  (/)
32eqcomi 2416 . . 3  |-  (/)  =  ran  (/)
43grpon0 21751 . 2  |-  ( (/)  e.  GrpOp  ->  (/)  =/=  (/) )
51, 4mto 169 1  |-  -.  (/)  e.  GrpOp
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 1721    =/= wne 2575   (/)c0 3596   ran crn 4846   GrpOpcgr 21735
This theorem is referenced by:  zrdivrng  21981  vsfval  22075
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-fo 5427  df-fv 5429  df-ov 6051  df-grpo 21740
  Copyright terms: Public domain W3C validator