MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0plef Unicode version

Theorem 0plef 19027
Description: Two ways to say that the function  F on the reals is nonnegative. (Contributed by Mario Carneiro, 17-Aug-2014.)
Assertion
Ref Expression
0plef  |-  ( F : RR --> ( 0 [,)  +oo )  <->  ( F : RR --> RR  /\  0 p  o R  <_  F
) )

Proof of Theorem 0plef
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 0re 8838 . . . 4  |-  0  e.  RR
2 pnfxr 10455 . . . 4  |-  +oo  e.  RR*
3 icossre 10730 . . . 4  |-  ( ( 0  e.  RR  /\  +oo 
e.  RR* )  ->  (
0 [,)  +oo )  C_  RR )
41, 2, 3mp2an 653 . . 3  |-  ( 0 [,)  +oo )  C_  RR
5 fss 5397 . . 3  |-  ( ( F : RR --> ( 0 [,)  +oo )  /\  (
0 [,)  +oo )  C_  RR )  ->  F : RR
--> RR )
64, 5mpan2 652 . 2  |-  ( F : RR --> ( 0 [,)  +oo )  ->  F : RR --> RR )
7 ffvelrn 5663 . . . . 5  |-  ( ( F : RR --> RR  /\  x  e.  RR )  ->  ( F `  x
)  e.  RR )
8 elrege0 10746 . . . . . 6  |-  ( ( F `  x )  e.  ( 0 [,) 
+oo )  <->  ( ( F `  x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
98baib 871 . . . . 5  |-  ( ( F `  x )  e.  RR  ->  (
( F `  x
)  e.  ( 0 [,)  +oo )  <->  0  <_  ( F `  x ) ) )
107, 9syl 15 . . . 4  |-  ( ( F : RR --> RR  /\  x  e.  RR )  ->  ( ( F `  x )  e.  ( 0 [,)  +oo )  <->  0  <_  ( F `  x ) ) )
1110ralbidva 2559 . . 3  |-  ( F : RR --> RR  ->  ( A. x  e.  RR  ( F `  x )  e.  ( 0 [,) 
+oo )  <->  A. x  e.  RR  0  <_  ( F `  x )
) )
12 ffn 5389 . . . 4  |-  ( F : RR --> RR  ->  F  Fn  RR )
13 ffnfv 5685 . . . . 5  |-  ( F : RR --> ( 0 [,)  +oo )  <->  ( F  Fn  RR  /\  A. x  e.  RR  ( F `  x )  e.  ( 0 [,)  +oo )
) )
1413baib 871 . . . 4  |-  ( F  Fn  RR  ->  ( F : RR --> ( 0 [,)  +oo )  <->  A. x  e.  RR  ( F `  x )  e.  ( 0 [,)  +oo )
) )
1512, 14syl 15 . . 3  |-  ( F : RR --> RR  ->  ( F : RR --> ( 0 [,)  +oo )  <->  A. x  e.  RR  ( F `  x )  e.  ( 0 [,)  +oo )
) )
16 0cn 8831 . . . . . . 7  |-  0  e.  CC
17 fnconstg 5429 . . . . . . 7  |-  ( 0  e.  CC  ->  ( CC  X.  { 0 } )  Fn  CC )
1816, 17ax-mp 8 . . . . . 6  |-  ( CC 
X.  { 0 } )  Fn  CC
19 df-0p 19025 . . . . . . 7  |-  0 p  =  ( CC  X.  { 0 } )
2019fneq1i 5338 . . . . . 6  |-  ( 0 p  Fn  CC  <->  ( CC  X.  { 0 } )  Fn  CC )
2118, 20mpbir 200 . . . . 5  |-  0 p  Fn  CC
2221a1i 10 . . . 4  |-  ( F : RR --> RR  ->  0 p  Fn  CC )
23 cnex 8818 . . . . 5  |-  CC  e.  _V
2423a1i 10 . . . 4  |-  ( F : RR --> RR  ->  CC  e.  _V )
25 reex 8828 . . . . 5  |-  RR  e.  _V
2625a1i 10 . . . 4  |-  ( F : RR --> RR  ->  RR  e.  _V )
27 ax-resscn 8794 . . . . 5  |-  RR  C_  CC
28 sseqin2 3388 . . . . 5  |-  ( RR  C_  CC  <->  ( CC  i^i  RR )  =  RR )
2927, 28mpbi 199 . . . 4  |-  ( CC 
i^i  RR )  =  RR
30 0pval 19026 . . . . 5  |-  ( x  e.  CC  ->  (
0 p `  x
)  =  0 )
3130adantl 452 . . . 4  |-  ( ( F : RR --> RR  /\  x  e.  CC )  ->  ( 0 p `  x )  =  0 )
32 eqidd 2284 . . . 4  |-  ( ( F : RR --> RR  /\  x  e.  RR )  ->  ( F `  x
)  =  ( F `
 x ) )
3322, 12, 24, 26, 29, 31, 32ofrfval 6086 . . 3  |-  ( F : RR --> RR  ->  ( 0 p  o R  <_  F  <->  A. x  e.  RR  0  <_  ( F `  x )
) )
3411, 15, 333bitr4d 276 . 2  |-  ( F : RR --> RR  ->  ( F : RR --> ( 0 [,)  +oo )  <->  0 p  o R  <_  F ) )
356, 34biadan2 623 1  |-  ( F : RR --> ( 0 [,)  +oo )  <->  ( F : RR --> RR  /\  0 p  o R  <_  F
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788    i^i cin 3151    C_ wss 3152   {csn 3640   class class class wbr 4023    X. cxp 4687    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858    o Rcofr 6077   CCcc 8735   RRcr 8736   0cc0 8737    +oocpnf 8864   RR*cxr 8866    <_ cle 8868   [,)cico 10658   0 pc0p 19024
This theorem is referenced by:  itg2i1fseq  19110  itg2addlem  19113
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-i2m1 8805  ax-1ne0 8806  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-ofr 6079  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-ico 10662  df-0p 19025
  Copyright terms: Public domain W3C validator