Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  0pss Unicode version

Theorem 0pss 3505
 Description: The null set is a proper subset of any non-empty set. (Contributed by NM, 27-Feb-1996.)
Assertion
Ref Expression
0pss

Proof of Theorem 0pss
StepHypRef Expression
1 0ss 3496 . . 3
2 df-pss 3181 . . 3
31, 2mpbiran 884 . 2
4 necom 2540 . 2
53, 4bitri 240 1
 Colors of variables: wff set class Syntax hints:   wb 176   wne 2459   wss 3165   wpss 3166  c0 3468 This theorem is referenced by:  php  7061  zornn0g  8148  prn0  8629  genpn0  8643  nqpr  8654  ltexprlem5  8680  reclem2pr  8688  suplem1pr  8692  alexsubALTlem4  17760 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-v 2803  df-dif 3168  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469
 Copyright terms: Public domain W3C validator