MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0ram2 Unicode version

Theorem 0ram2 13068
Description: The Ramsey number when  M  = 
0. (Contributed by Mario Carneiro, 22-Apr-2015.)
Assertion
Ref Expression
0ram2  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  (
0 Ramsey  F )  =  sup ( ran  F ,  RR ,  <  ) )

Proof of Theorem 0ram2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frn 5395 . . . . 5  |-  ( F : R --> NN0  ->  ran 
F  C_  NN0 )
213ad2ant3 978 . . . 4  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  ran  F 
C_  NN0 )
3 nn0ssz 10044 . . . 4  |-  NN0  C_  ZZ
42, 3syl6ss 3191 . . 3  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  ran  F 
C_  ZZ )
5 nn0ssre 9969 . . . . 5  |-  NN0  C_  RR
62, 5syl6ss 3191 . . . 4  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  ran  F 
C_  RR )
7 simp1 955 . . . . 5  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  R  e.  Fin )
8 ffn 5389 . . . . . . 7  |-  ( F : R --> NN0  ->  F  Fn  R )
983ad2ant3 978 . . . . . 6  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  F  Fn  R )
10 dffn4 5457 . . . . . 6  |-  ( F  Fn  R  <->  F : R -onto-> ran  F )
119, 10sylib 188 . . . . 5  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  F : R -onto-> ran  F )
12 fofi 7142 . . . . 5  |-  ( ( R  e.  Fin  /\  F : R -onto-> ran  F
)  ->  ran  F  e. 
Fin )
137, 11, 12syl2anc 642 . . . 4  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  ran  F  e.  Fin )
14 fdm 5393 . . . . . . 7  |-  ( F : R --> NN0  ->  dom 
F  =  R )
15143ad2ant3 978 . . . . . 6  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  dom  F  =  R )
16 simp2 956 . . . . . 6  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  R  =/=  (/) )
1715, 16eqnetrd 2464 . . . . 5  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  dom  F  =/=  (/) )
18 dm0rn0 4895 . . . . . 6  |-  ( dom 
F  =  (/)  <->  ran  F  =  (/) )
1918necon3bii 2478 . . . . 5  |-  ( dom 
F  =/=  (/)  <->  ran  F  =/=  (/) )
2017, 19sylib 188 . . . 4  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  ran  F  =/=  (/) )
21 fimaxre 9701 . . . 4  |-  ( ( ran  F  C_  RR  /\ 
ran  F  e.  Fin  /\ 
ran  F  =/=  (/) )  ->  E. x  e.  ran  F A. y  e.  ran  F  y  <_  x )
226, 13, 20, 21syl3anc 1182 . . 3  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  E. x  e.  ran  F A. y  e.  ran  F  y  <_  x )
23 ssrexv 3238 . . 3  |-  ( ran 
F  C_  ZZ  ->  ( E. x  e.  ran  F A. y  e.  ran  F  y  <_  x  ->  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x ) )
244, 22, 23sylc 56 . 2  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  E. x  e.  ZZ  A. y  e. 
ran  F  y  <_  x )
25 0ram 13067 . 2  |-  ( ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R --> NN0 )  /\  E. x  e.  ZZ  A. y  e.  ran  F  y  <_  x )  ->  (
0 Ramsey  F )  =  sup ( ran  F ,  RR ,  <  ) )
2624, 25mpdan 649 1  |-  ( ( R  e.  Fin  /\  R  =/=  (/)  /\  F : R
--> NN0 )  ->  (
0 Ramsey  F )  =  sup ( ran  F ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544    C_ wss 3152   (/)c0 3455   class class class wbr 4023   dom cdm 4689   ran crn 4690    Fn wfn 5250   -->wf 5251   -onto->wfo 5253  (class class class)co 5858   Fincfn 6863   supcsup 7193   RRcr 8736   0cc0 8737    < clt 8867    <_ cle 8868   NN0cn0 9965   ZZcz 10024   Ramsey cram 13046
This theorem is referenced by:  0ramcl  13070
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-hash 11338  df-ram 13048
  Copyright terms: Public domain W3C validator