MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0we1 Structured version   Unicode version

Theorem 0we1 6750
Description: The empty set is a well-ordering of ordinal one. (Contributed by Mario Carneiro, 9-Feb-2015.)
Assertion
Ref Expression
0we1  |-  (/)  We  1o

Proof of Theorem 0we1
StepHypRef Expression
1 noel 3632 . . . 4  |-  -.  <. (/)
,  (/) >.  e.  (/)
2 df-br 4213 . . . 4  |-  ( (/) (/) (/) 
<-> 
<. (/) ,  (/) >.  e.  (/) )
31, 2mtbir 291 . . 3  |-  -.  (/) (/) (/)
4 rel0 4999 . . . 4  |-  Rel  (/)
5 wesn 4949 . . . 4  |-  ( Rel  (/)  ->  ( (/)  We  { (/)
}  <->  -.  (/) (/) (/) ) )
64, 5ax-mp 8 . . 3  |-  ( (/)  We 
{ (/) }  <->  -.  (/) (/) (/) )
73, 6mpbir 201 . 2  |-  (/)  We  { (/)
}
8 df1o2 6736 . . 3  |-  1o  =  { (/) }
9 weeq2 4571 . . 3  |-  ( 1o  =  { (/) }  ->  (
(/)  We  1o  <->  (/)  We  { (/)
} ) )
108, 9ax-mp 8 . 2  |-  ( (/)  We  1o  <->  (/)  We  { (/) } )
117, 10mpbir 201 1  |-  (/)  We  1o
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 177    = wceq 1652    e. wcel 1725   (/)c0 3628   {csn 3814   <.cop 3817   class class class wbr 4212    We wwe 4540   Rel wrel 4883   1oc1o 6717
This theorem is referenced by:  psr1tos  16587
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-suc 4587  df-xp 4884  df-rel 4885  df-1o 6724
  Copyright terms: Public domain W3C validator