MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1259lem2 Unicode version

Theorem 1259lem2 13130
Description: Lemma for 1259prm 13134. Calculate a power mod. In decimal, we calculate  2 ^ 3 4  =  ( 2 ^ 1 7 ) ^ 2  ==  1
3 6 ^ 2  ==  1 4 N  +  8 7 0. (Contributed by Mario Carneiro, 22-Feb-2014.) (Revised by Mario Carneiro, 20-Apr-2015.)
Hypothesis
Ref Expression
1259prm.1  |-  N  = ;;; 1 2 5 9
Assertion
Ref Expression
1259lem2  |-  ( ( 2 ^; 3 4 )  mod 
N )  =  (;; 8 7 0  mod 
N )

Proof of Theorem 1259lem2
StepHypRef Expression
1 1259prm.1 . . 3  |-  N  = ;;; 1 2 5 9
2 1nn0 9981 . . . . . 6  |-  1  e.  NN0
3 2nn0 9982 . . . . . 6  |-  2  e.  NN0
42, 3deccl 10138 . . . . 5  |- ; 1 2  e.  NN0
5 5nn0 9985 . . . . 5  |-  5  e.  NN0
64, 5deccl 10138 . . . 4  |- ;; 1 2 5  e.  NN0
7 9nn 9884 . . . 4  |-  9  e.  NN
86, 7decnncl 10137 . . 3  |- ;;; 1 2 5 9  e.  NN
91, 8eqeltri 2353 . 2  |-  N  e.  NN
10 2nn 9877 . 2  |-  2  e.  NN
11 7nn0 9987 . . 3  |-  7  e.  NN0
122, 11deccl 10138 . 2  |- ; 1 7  e.  NN0
13 4nn0 9984 . . . 4  |-  4  e.  NN0
142, 13deccl 10138 . . 3  |- ; 1 4  e.  NN0
1514nn0zi 10048 . 2  |- ; 1 4  e.  ZZ
16 3nn0 9983 . . . 4  |-  3  e.  NN0
172, 16deccl 10138 . . 3  |- ; 1 3  e.  NN0
18 6nn0 9986 . . 3  |-  6  e.  NN0
1917, 18deccl 10138 . 2  |- ;; 1 3 6  e.  NN0
20 8nn0 9988 . . . 4  |-  8  e.  NN0
2120, 11deccl 10138 . . 3  |- ; 8 7  e.  NN0
22 0nn0 9980 . . 3  |-  0  e.  NN0
2321, 22deccl 10138 . 2  |- ;; 8 7 0  e.  NN0
2411259lem1 13129 . 2  |-  ( ( 2 ^; 1 7 )  mod 
N )  =  (;; 1 3 6  mod 
N )
25 eqid 2283 . . 3  |- ; 1 7  = ; 1 7
26 2cn 9816 . . . . . 6  |-  2  e.  CC
2726mulid1i 8839 . . . . 5  |-  ( 2  x.  1 )  =  2
2827oveq1i 5868 . . . 4  |-  ( ( 2  x.  1 )  +  1 )  =  ( 2  +  1 )
29 2p1e3 9847 . . . 4  |-  ( 2  +  1 )  =  3
3028, 29eqtri 2303 . . 3  |-  ( ( 2  x.  1 )  +  1 )  =  3
31 7nn 9882 . . . . 5  |-  7  e.  NN
3231nncni 9756 . . . 4  |-  7  e.  CC
33 7t2e14 10206 . . . 4  |-  ( 7  x.  2 )  = ; 1
4
3432, 26, 33mulcomli 8844 . . 3  |-  ( 2  x.  7 )  = ; 1
4
353, 2, 11, 25, 13, 2, 30, 34decmul2c 10172 . 2  |-  ( 2  x. ; 1 7 )  = ; 3
4
36 9nn0 9989 . . . 4  |-  9  e.  NN0
37 eqid 2283 . . . 4  |- ;; 8 7 0  = ;; 8 7 0
38 eqid 2283 . . . . 5  |- ;; 1 2 5  = ;; 1 2 5
39 eqid 2283 . . . . . 6  |- ; 8 7  = ; 8 7
40 eqid 2283 . . . . . 6  |- ; 1 2  = ; 1 2
41 8p1e9 9853 . . . . . 6  |-  ( 8  +  1 )  =  9
42 7p2e9 9867 . . . . . 6  |-  ( 7  +  2 )  =  9
4320, 11, 2, 3, 39, 40, 41, 42decadd 10165 . . . . 5  |-  (; 8 7  + ; 1 2 )  = ; 9
9
44 9p7e16 10191 . . . . . 6  |-  ( 9  +  7 )  = ; 1
6
45 eqid 2283 . . . . . . 7  |- ; 1 4  = ; 1 4
46 3cn 9818 . . . . . . . . 9  |-  3  e.  CC
47 ax-1cn 8795 . . . . . . . . 9  |-  1  e.  CC
48 3p1e4 9848 . . . . . . . . 9  |-  ( 3  +  1 )  =  4
4946, 47, 48addcomli 9004 . . . . . . . 8  |-  ( 1  +  3 )  =  4
5013dec0h 10140 . . . . . . . 8  |-  4  = ; 0 4
5149, 50eqtri 2303 . . . . . . 7  |-  ( 1  +  3 )  = ; 0
4
5247mulid1i 8839 . . . . . . . . 9  |-  ( 1  x.  1 )  =  1
53 00id 8987 . . . . . . . . 9  |-  ( 0  +  0 )  =  0
5452, 53oveq12i 5870 . . . . . . . 8  |-  ( ( 1  x.  1 )  +  ( 0  +  0 ) )  =  ( 1  +  0 )
5547addid1i 8999 . . . . . . . 8  |-  ( 1  +  0 )  =  1
5654, 55eqtri 2303 . . . . . . 7  |-  ( ( 1  x.  1 )  +  ( 0  +  0 ) )  =  1
57 4cn 9820 . . . . . . . . . 10  |-  4  e.  CC
5857mulid1i 8839 . . . . . . . . 9  |-  ( 4  x.  1 )  =  4
5958oveq1i 5868 . . . . . . . 8  |-  ( ( 4  x.  1 )  +  4 )  =  ( 4  +  4 )
60 4p4e8 9859 . . . . . . . 8  |-  ( 4  +  4 )  =  8
6120dec0h 10140 . . . . . . . 8  |-  8  = ; 0 8
6259, 60, 613eqtri 2307 . . . . . . 7  |-  ( ( 4  x.  1 )  +  4 )  = ; 0
8
632, 13, 22, 13, 45, 51, 2, 20, 22, 56, 62decmac 10163 . . . . . 6  |-  ( (; 1
4  x.  1 )  +  ( 1  +  3 ) )  = ; 1
8
6418dec0h 10140 . . . . . . 7  |-  6  = ; 0 6
6526mulid2i 8840 . . . . . . . . 9  |-  ( 1  x.  2 )  =  2
6647addid2i 9000 . . . . . . . . 9  |-  ( 0  +  1 )  =  1
6765, 66oveq12i 5870 . . . . . . . 8  |-  ( ( 1  x.  2 )  +  ( 0  +  1 ) )  =  ( 2  +  1 )
6867, 29eqtri 2303 . . . . . . 7  |-  ( ( 1  x.  2 )  +  ( 0  +  1 ) )  =  3
69 4t2e8 9874 . . . . . . . . 9  |-  ( 4  x.  2 )  =  8
7069oveq1i 5868 . . . . . . . 8  |-  ( ( 4  x.  2 )  +  6 )  =  ( 8  +  6 )
71 8p6e14 10183 . . . . . . . 8  |-  ( 8  +  6 )  = ; 1
4
7270, 71eqtri 2303 . . . . . . 7  |-  ( ( 4  x.  2 )  +  6 )  = ; 1
4
732, 13, 22, 18, 45, 64, 3, 13, 2, 68, 72decmac 10163 . . . . . 6  |-  ( (; 1
4  x.  2 )  +  6 )  = ; 3
4
742, 3, 2, 18, 40, 44, 14, 13, 16, 63, 73decma2c 10164 . . . . 5  |-  ( (; 1
4  x. ; 1 2 )  +  ( 9  +  7 ) )  = ;; 1 8 4
7536dec0h 10140 . . . . . 6  |-  9  = ; 0 9
76 5nn 9880 . . . . . . . . . 10  |-  5  e.  NN
7776nncni 9756 . . . . . . . . 9  |-  5  e.  CC
7877mulid2i 8840 . . . . . . . 8  |-  ( 1  x.  5 )  =  5
7926addid2i 9000 . . . . . . . 8  |-  ( 0  +  2 )  =  2
8078, 79oveq12i 5870 . . . . . . 7  |-  ( ( 1  x.  5 )  +  ( 0  +  2 ) )  =  ( 5  +  2 )
81 5p2e7 9860 . . . . . . 7  |-  ( 5  +  2 )  =  7
8280, 81eqtri 2303 . . . . . 6  |-  ( ( 1  x.  5 )  +  ( 0  +  2 ) )  =  7
83 5t4e20 10199 . . . . . . . 8  |-  ( 5  x.  4 )  = ; 2
0
8477, 57, 83mulcomli 8844 . . . . . . 7  |-  ( 4  x.  5 )  = ; 2
0
857nncni 9756 . . . . . . . 8  |-  9  e.  CC
8685addid2i 9000 . . . . . . 7  |-  ( 0  +  9 )  =  9
873, 22, 36, 84, 86decaddi 10168 . . . . . 6  |-  ( ( 4  x.  5 )  +  9 )  = ; 2
9
882, 13, 22, 36, 45, 75, 5, 36, 3, 82, 87decmac 10163 . . . . 5  |-  ( (; 1
4  x.  5 )  +  9 )  = ; 7
9
894, 5, 36, 36, 38, 43, 14, 36, 11, 74, 88decma2c 10164 . . . 4  |-  ( (; 1
4  x. ;; 1 2 5 )  +  (; 8 7  + ; 1 2 ) )  = ;;; 1 8 4 9
9085mulid2i 8840 . . . . . . . . 9  |-  ( 1  x.  9 )  =  9
9190oveq1i 5868 . . . . . . . 8  |-  ( ( 1  x.  9 )  +  3 )  =  ( 9  +  3 )
92 9p3e12 10187 . . . . . . . 8  |-  ( 9  +  3 )  = ; 1
2
9391, 92eqtri 2303 . . . . . . 7  |-  ( ( 1  x.  9 )  +  3 )  = ; 1
2
94 9t4e36 10221 . . . . . . . 8  |-  ( 9  x.  4 )  = ; 3
6
9585, 57, 94mulcomli 8844 . . . . . . 7  |-  ( 4  x.  9 )  = ; 3
6
9636, 2, 13, 45, 18, 16, 93, 95decmul1c 10171 . . . . . 6  |-  (; 1 4  x.  9 )  = ;; 1 2 6
9796oveq1i 5868 . . . . 5  |-  ( (; 1
4  x.  9 )  +  0 )  =  (;; 1 2 6  +  0 )
984, 18deccl 10138 . . . . . . 7  |- ;; 1 2 6  e.  NN0
9998nn0cni 9977 . . . . . 6  |- ;; 1 2 6  e.  CC
10099addid1i 8999 . . . . 5  |-  (;; 1 2 6  +  0 )  = ;; 1 2 6
10197, 100eqtri 2303 . . . 4  |-  ( (; 1
4  x.  9 )  +  0 )  = ;; 1 2 6
1026, 36, 21, 22, 1, 37, 14, 18, 4, 89, 101decma2c 10164 . . 3  |-  ( (; 1
4  x.  N )  + ;; 8 7 0 )  = ;;;; 1 8 4 9 6
103 eqid 2283 . . . 4  |- ;; 1 3 6  = ;; 1 3 6
10420, 2deccl 10138 . . . 4  |- ; 8 1  e.  NN0
105 eqid 2283 . . . . 5  |- ; 1 3  = ; 1 3
106 eqid 2283 . . . . 5  |- ; 8 1  = ; 8 1
10713, 22deccl 10138 . . . . 5  |- ; 4 0  e.  NN0
108 eqid 2283 . . . . . . 7  |- ; 4 0  = ; 4 0
10957addid2i 9000 . . . . . . 7  |-  ( 0  +  4 )  =  4
110 8nn 9883 . . . . . . . . 9  |-  8  e.  NN
111110nncni 9756 . . . . . . . 8  |-  8  e.  CC
112111addid1i 8999 . . . . . . 7  |-  ( 8  +  0 )  =  8
11322, 20, 13, 22, 61, 108, 109, 112decadd 10165 . . . . . 6  |-  ( 8  + ; 4 0 )  = ; 4
8
114 4p1e5 9849 . . . . . . . 8  |-  ( 4  +  1 )  =  5
1155dec0h 10140 . . . . . . . 8  |-  5  = ; 0 5
116114, 115eqtri 2303 . . . . . . 7  |-  ( 4  +  1 )  = ; 0
5
11746mulid1i 8839 . . . . . . . . 9  |-  ( 3  x.  1 )  =  3
118117oveq1i 5868 . . . . . . . 8  |-  ( ( 3  x.  1 )  +  5 )  =  ( 3  +  5 )
119 5p3e8 9861 . . . . . . . . 9  |-  ( 5  +  3 )  =  8
12077, 46, 119addcomli 9004 . . . . . . . 8  |-  ( 3  +  5 )  =  8
121118, 120, 613eqtri 2307 . . . . . . 7  |-  ( ( 3  x.  1 )  +  5 )  = ; 0
8
1222, 16, 22, 5, 105, 116, 2, 20, 22, 56, 121decmac 10163 . . . . . 6  |-  ( (; 1
3  x.  1 )  +  ( 4  +  1 ) )  = ; 1
8
123 6nn 9881 . . . . . . . . . 10  |-  6  e.  NN
124123nncni 9756 . . . . . . . . 9  |-  6  e.  CC
125124mulid1i 8839 . . . . . . . 8  |-  ( 6  x.  1 )  =  6
126125oveq1i 5868 . . . . . . 7  |-  ( ( 6  x.  1 )  +  8 )  =  ( 6  +  8 )
127111, 124, 71addcomli 9004 . . . . . . 7  |-  ( 6  +  8 )  = ; 1
4
128126, 127eqtri 2303 . . . . . 6  |-  ( ( 6  x.  1 )  +  8 )  = ; 1
4
12917, 18, 13, 20, 103, 113, 2, 13, 2, 122, 128decmac 10163 . . . . 5  |-  ( (;; 1 3 6  x.  1 )  +  ( 8  + ; 4 0 ) )  = ;; 1 8 4
1302dec0h 10140 . . . . . 6  |-  1  = ; 0 1
13166, 130eqtri 2303 . . . . . . 7  |-  ( 0  +  1 )  = ; 0
1
13246mulid2i 8840 . . . . . . . . 9  |-  ( 1  x.  3 )  =  3
133132, 66oveq12i 5870 . . . . . . . 8  |-  ( ( 1  x.  3 )  +  ( 0  +  1 ) )  =  ( 3  +  1 )
134133, 48eqtri 2303 . . . . . . 7  |-  ( ( 1  x.  3 )  +  ( 0  +  1 ) )  =  4
135 3t3e9 9873 . . . . . . . . 9  |-  ( 3  x.  3 )  =  9
136135oveq1i 5868 . . . . . . . 8  |-  ( ( 3  x.  3 )  +  1 )  =  ( 9  +  1 )
137 9p1e10 9854 . . . . . . . 8  |-  ( 9  +  1 )  =  10
138 dec10 10154 . . . . . . . 8  |-  10  = ; 1 0
139136, 137, 1383eqtri 2307 . . . . . . 7  |-  ( ( 3  x.  3 )  +  1 )  = ; 1
0
1402, 16, 22, 2, 105, 131, 16, 22, 2, 134, 139decmac 10163 . . . . . 6  |-  ( (; 1
3  x.  3 )  +  ( 0  +  1 ) )  = ; 4
0
141 6t3e18 10202 . . . . . . 7  |-  ( 6  x.  3 )  = ; 1
8
1422, 20, 2, 141, 41decaddi 10168 . . . . . 6  |-  ( ( 6  x.  3 )  +  1 )  = ; 1
9
14317, 18, 22, 2, 103, 130, 16, 36, 2, 140, 142decmac 10163 . . . . 5  |-  ( (;; 1 3 6  x.  3 )  +  1 )  = ;; 4 0 9
1442, 16, 20, 2, 105, 106, 19, 36, 107, 129, 143decma2c 10164 . . . 4  |-  ( (;; 1 3 6  x. ; 1
3 )  + ; 8 1 )  = ;;; 1 8 4 9
14516dec0h 10140 . . . . . 6  |-  3  = ; 0 3
146124mulid2i 8840 . . . . . . . 8  |-  ( 1  x.  6 )  =  6
147146, 79oveq12i 5870 . . . . . . 7  |-  ( ( 1  x.  6 )  +  ( 0  +  2 ) )  =  ( 6  +  2 )
148 6p2e8 9864 . . . . . . 7  |-  ( 6  +  2 )  =  8
149147, 148eqtri 2303 . . . . . 6  |-  ( ( 1  x.  6 )  +  ( 0  +  2 ) )  =  8
150124, 46, 141mulcomli 8844 . . . . . . 7  |-  ( 3  x.  6 )  = ; 1
8
151 1p1e2 9840 . . . . . . 7  |-  ( 1  +  1 )  =  2
152 8p3e11 10180 . . . . . . 7  |-  ( 8  +  3 )  = ; 1
1
1532, 20, 16, 150, 151, 2, 152decaddci 10169 . . . . . 6  |-  ( ( 3  x.  6 )  +  3 )  = ; 2
1
1542, 16, 22, 16, 105, 145, 18, 2, 3, 149, 153decmac 10163 . . . . 5  |-  ( (; 1
3  x.  6 )  +  3 )  = ; 8
1
155 6t6e36 10205 . . . . 5  |-  ( 6  x.  6 )  = ; 3
6
15618, 17, 18, 103, 18, 16, 154, 155decmul1c 10171 . . . 4  |-  (;; 1 3 6  x.  6 )  = ;; 8 1 6
15719, 17, 18, 103, 18, 104, 144, 156decmul2c 10172 . . 3  |-  (;; 1 3 6  x. ;; 1 3 6 )  = ;;;; 1 8 4 9 6
158102, 157eqtr4i 2306 . 2  |-  ( (; 1
4  x.  N )  + ;; 8 7 0 )  =  (;; 1 3 6  x. ;; 1 3 6 )
1599, 10, 12, 15, 19, 23, 24, 35, 158mod2xi 13084 1  |-  ( ( 2 ^; 3 4 )  mod 
N )  =  (;; 8 7 0  mod 
N )
Colors of variables: wff set class
Syntax hints:    = wceq 1623  (class class class)co 5858   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742   NNcn 9746   2c2 9795   3c3 9796   4c4 9797   5c5 9798   6c6 9799   7c7 9800   8c8 9801   9c9 9802   10c10 9803  ;cdc 10124    mod cmo 10973   ^cexp 11104
This theorem is referenced by:  1259lem3  13131  1259lem5  13133
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-rp 10355  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105
  Copyright terms: Public domain W3C validator