MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.2 Unicode version

Theorem 19.2 1648
Description: Theorem 19.2 of [Margaris] p. 89. Note: This proof is very different from Margaris' because we only have Tarski's FOL axiom schemes available at this point. See the later 19.2g 1792 for a more conventional proof. (Contributed by NM, 2-Aug-2017.) (Revised by Wolf Lammen to remove dependency on ax-8, 4-Dec-2017.)
Assertion
Ref Expression
19.2  |-  ( A. x ph  ->  E. x ph )

Proof of Theorem 19.2
StepHypRef Expression
1 id 19 . . 3  |-  ( ph  ->  ph )
21exiftru 1647 . 2  |-  E. x
( ph  ->  ph )
3219.35i 1591 1  |-  ( A. x ph  ->  E. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1530   E.wex 1531
This theorem is referenced by:  19.8w  1649  19.39  1650  19.24  1651  19.34  1652  eusv2i  4547  extt  24915  pm10.251  27658  a9e2eq  28622  a9e2eqVD  28999
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-9 1644
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1532
  Copyright terms: Public domain W3C validator