Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.23t Unicode version

Theorem 19.23t 1796
 Description: Closed form of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 7-Nov-2005.)
Assertion
Ref Expression
19.23t

Proof of Theorem 19.23t
StepHypRef Expression
1 exim 1562 . . 3
2 19.9t 1782 . . . 4
32imbi2d 307 . . 3
41, 3syl5ib 210 . 2
5 nfnf1 1757 . . 3
6 nfe1 1706 . . . . 5
76a1i 10 . . . 4
8 id 19 . . . 4
97, 8nfimd 1761 . . 3
10 19.8a 1718 . . . . 5
1110a1i 10 . . . 4
1211imim1d 69 . . 3
135, 9, 12alrimdd 1748 . 2
144, 13impbid 183 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 176  wal 1527  wex 1528  wnf 1531 This theorem is referenced by:  19.23  1797  sbft  1965  r19.23t  2657  ceqsalt  2810  vtoclgft  2834  sbciegft  3021 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-11 1715 This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-nf 1532
 Copyright terms: Public domain W3C validator