MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.28v Unicode version

Theorem 19.28v 1836
Description: Theorem 19.28 of [Margaris] p. 90. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
19.28v  |-  ( A. x ( ph  /\  ps )  <->  ( ph  /\  A. x ps ) )
Distinct variable group:    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem 19.28v
StepHypRef Expression
1 nfv 1605 . 2  |-  F/ x ph
2119.28 1806 1  |-  ( A. x ( ph  /\  ps )  <->  ( ph  /\  A. x ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358   A.wal 1527
This theorem is referenced by:  cbval2  1944  reu6  2954  tfrlem2  6392  dfer2  6661  kmlem14  7789  kmlem15  7790  19.28vv  27584  bnj1176  29035  bnj1186  29037
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-11 1715
This theorem depends on definitions:  df-bi 177  df-an 360  df-nf 1532
  Copyright terms: Public domain W3C validator