MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.2g Unicode version

Theorem 19.2g 1780
Description: Theorem 19.2 of [Margaris] p. 89, generalized to use two set variables. (Contributed by O'Cat, 31-Mar-2008.)
Assertion
Ref Expression
19.2g  |-  ( A. x ph  ->  E. y ph )

Proof of Theorem 19.2g
StepHypRef Expression
1 19.8a 1718 . 2  |-  ( ph  ->  E. y ph )
21sps 1739 1  |-  ( A. x ph  ->  E. y ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1527   E.wex 1528
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-11 1715
This theorem depends on definitions:  df-bi 177  df-ex 1529
  Copyright terms: Public domain W3C validator