MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.37aiv Structured version   Unicode version

Theorem 19.37aiv 1924
Description: Inference from Theorem 19.37 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.37aiv.1  |-  E. x
( ph  ->  ps )
Assertion
Ref Expression
19.37aiv  |-  ( ph  ->  E. x ps )
Distinct variable group:    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem 19.37aiv
StepHypRef Expression
1 19.37aiv.1 . 2  |-  E. x
( ph  ->  ps )
2 19.37v 1923 . 2  |-  ( E. x ( ph  ->  ps )  <->  ( ph  ->  E. x ps ) )
31, 2mpbi 201 1  |-  ( ph  ->  E. x ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wex 1551
This theorem is referenced by:  eqvinc  3065  bnd  7818  zfcndinf  8495  relopabVD  29075  bnj1093  29411  bnj1186  29438
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-11 1762
This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-nf 1555
  Copyright terms: Public domain W3C validator