MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.39 Unicode version

Theorem 19.39 1650
Description: Theorem 19.39 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.39  |-  ( ( E. x ph  ->  E. x ps )  ->  E. x ( ph  ->  ps ) )

Proof of Theorem 19.39
StepHypRef Expression
1 19.2 1648 . . 3  |-  ( A. x ph  ->  E. x ph )
21imim1i 54 . 2  |-  ( ( E. x ph  ->  E. x ps )  -> 
( A. x ph  ->  E. x ps )
)
3 19.35 1590 . 2  |-  ( E. x ( ph  ->  ps )  <->  ( A. x ph  ->  E. x ps )
)
42, 3sylibr 203 1  |-  ( ( E. x ph  ->  E. x ps )  ->  E. x ( ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1530   E.wex 1531
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-9 1644
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1532
  Copyright terms: Public domain W3C validator