MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.40 Unicode version

Theorem 19.40 1599
Description: Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.40  |-  ( E. x ( ph  /\  ps )  ->  ( E. x ph  /\  E. x ps ) )

Proof of Theorem 19.40
StepHypRef Expression
1 exsimpl 1582 . 2  |-  ( E. x ( ph  /\  ps )  ->  E. x ph )
2 simpr 447 . . 3  |-  ( (
ph  /\  ps )  ->  ps )
32eximi 1566 . 2  |-  ( E. x ( ph  /\  ps )  ->  E. x ps )
41, 3jca 518 1  |-  ( E. x ( ph  /\  ps )  ->  ( E. x ph  /\  E. x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1531
This theorem is referenced by:  19.40-2  1600  19.41  1827  exdistrf  1924  uniin  3863  copsexg  4268  dmin  4902  imadif  5343  fv3  5557  exan3OLD  26822  exdistrfNEW7  29482
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1532
  Copyright terms: Public domain W3C validator