MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1cubrlem Unicode version

Theorem 1cubrlem 20634
Description: The cube roots of unity. (Contributed by Mario Carneiro, 23-Apr-2015.)
Assertion
Ref Expression
1cubrlem  |-  ( (
-u 1  ^ c 
( 2  /  3
) )  =  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )  /\  ( ( -u
1  ^ c  ( 2  /  3 ) ) ^ 2 )  =  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) )

Proof of Theorem 1cubrlem
StepHypRef Expression
1 neg1cn 10023 . . . 4  |-  -u 1  e.  CC
2 ax-1cn 9004 . . . . 5  |-  1  e.  CC
3 ax-1ne0 9015 . . . . 5  |-  1  =/=  0
42, 3negne0i 9331 . . . 4  |-  -u 1  =/=  0
5 2re 10025 . . . . . 6  |-  2  e.  RR
6 3nn 10090 . . . . . 6  |-  3  e.  NN
7 nndivre 9991 . . . . . 6  |-  ( ( 2  e.  RR  /\  3  e.  NN )  ->  ( 2  /  3
)  e.  RR )
85, 6, 7mp2an 654 . . . . 5  |-  ( 2  /  3 )  e.  RR
98recni 9058 . . . 4  |-  ( 2  /  3 )  e.  CC
10 cxpef 20509 . . . 4  |-  ( (
-u 1  e.  CC  /\  -u 1  =/=  0  /\  ( 2  /  3
)  e.  CC )  ->  ( -u 1  ^ c  ( 2  /  3 ) )  =  ( exp `  (
( 2  /  3
)  x.  ( log `  -u 1 ) ) ) )
111, 4, 9, 10mp3an 1279 . . 3  |-  ( -u
1  ^ c  ( 2  /  3 ) )  =  ( exp `  ( ( 2  / 
3 )  x.  ( log `  -u 1 ) ) )
12 logm1 20436 . . . . . 6  |-  ( log `  -u 1 )  =  ( _i  x.  pi )
1312oveq2i 6051 . . . . 5  |-  ( ( 2  /  3 )  x.  ( log `  -u 1
) )  =  ( ( 2  /  3
)  x.  ( _i  x.  pi ) )
14 ax-icn 9005 . . . . . 6  |-  _i  e.  CC
15 pire 20325 . . . . . . 7  |-  pi  e.  RR
1615recni 9058 . . . . . 6  |-  pi  e.  CC
179, 14, 16mul12i 9217 . . . . 5  |-  ( ( 2  /  3 )  x.  ( _i  x.  pi ) )  =  ( _i  x.  ( ( 2  /  3 )  x.  pi ) )
1813, 17eqtri 2424 . . . 4  |-  ( ( 2  /  3 )  x.  ( log `  -u 1
) )  =  ( _i  x.  ( ( 2  /  3 )  x.  pi ) )
1918fveq2i 5690 . . 3  |-  ( exp `  ( ( 2  / 
3 )  x.  ( log `  -u 1 ) ) )  =  ( exp `  ( _i  x.  (
( 2  /  3
)  x.  pi ) ) )
20 6nn 10093 . . . . . . . . 9  |-  6  e.  NN
21 nndivre 9991 . . . . . . . . 9  |-  ( ( pi  e.  RR  /\  6  e.  NN )  ->  ( pi  /  6
)  e.  RR )
2215, 20, 21mp2an 654 . . . . . . . 8  |-  ( pi 
/  6 )  e.  RR
2322recni 9058 . . . . . . 7  |-  ( pi 
/  6 )  e.  CC
24 coshalfpip 20355 . . . . . . 7  |-  ( ( pi  /  6 )  e.  CC  ->  ( cos `  ( ( pi 
/  2 )  +  ( pi  /  6
) ) )  = 
-u ( sin `  (
pi  /  6 ) ) )
2523, 24ax-mp 8 . . . . . 6  |-  ( cos `  ( ( pi  / 
2 )  +  ( pi  /  6 ) ) )  =  -u ( sin `  ( pi 
/  6 ) )
26 2cn 10026 . . . . . . . . . 10  |-  2  e.  CC
27 2ne0 10039 . . . . . . . . . 10  |-  2  =/=  0
28 divrec2 9651 . . . . . . . . . 10  |-  ( ( pi  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
pi  /  2 )  =  ( ( 1  /  2 )  x.  pi ) )
2916, 26, 27, 28mp3an 1279 . . . . . . . . 9  |-  ( pi 
/  2 )  =  ( ( 1  / 
2 )  x.  pi )
3020nncni 9966 . . . . . . . . . 10  |-  6  e.  CC
3120nnne0i 9990 . . . . . . . . . 10  |-  6  =/=  0
32 divrec2 9651 . . . . . . . . . 10  |-  ( ( pi  e.  CC  /\  6  e.  CC  /\  6  =/=  0 )  ->  (
pi  /  6 )  =  ( ( 1  /  6 )  x.  pi ) )
3316, 30, 31, 32mp3an 1279 . . . . . . . . 9  |-  ( pi 
/  6 )  =  ( ( 1  / 
6 )  x.  pi )
3429, 33oveq12i 6052 . . . . . . . 8  |-  ( ( pi  /  2 )  +  ( pi  / 
6 ) )  =  ( ( ( 1  /  2 )  x.  pi )  +  ( ( 1  /  6
)  x.  pi ) )
3526, 27reccli 9700 . . . . . . . . 9  |-  ( 1  /  2 )  e.  CC
3630, 31reccli 9700 . . . . . . . . 9  |-  ( 1  /  6 )  e.  CC
3735, 36, 16adddiri 9057 . . . . . . . 8  |-  ( ( ( 1  /  2
)  +  ( 1  /  6 ) )  x.  pi )  =  ( ( ( 1  /  2 )  x.  pi )  +  ( ( 1  /  6
)  x.  pi ) )
38 halfpm6th 10148 . . . . . . . . . 10  |-  ( ( ( 1  /  2
)  -  ( 1  /  6 ) )  =  ( 1  / 
3 )  /\  (
( 1  /  2
)  +  ( 1  /  6 ) )  =  ( 2  / 
3 ) )
3938simpri 449 . . . . . . . . 9  |-  ( ( 1  /  2 )  +  ( 1  / 
6 ) )  =  ( 2  /  3
)
4039oveq1i 6050 . . . . . . . 8  |-  ( ( ( 1  /  2
)  +  ( 1  /  6 ) )  x.  pi )  =  ( ( 2  / 
3 )  x.  pi )
4134, 37, 403eqtr2i 2430 . . . . . . 7  |-  ( ( pi  /  2 )  +  ( pi  / 
6 ) )  =  ( ( 2  / 
3 )  x.  pi )
4241fveq2i 5690 . . . . . 6  |-  ( cos `  ( ( pi  / 
2 )  +  ( pi  /  6 ) ) )  =  ( cos `  ( ( 2  /  3 )  x.  pi ) )
43 sincos6thpi 20376 . . . . . . . . 9  |-  ( ( sin `  ( pi 
/  6 ) )  =  ( 1  / 
2 )  /\  ( cos `  ( pi  / 
6 ) )  =  ( ( sqr `  3
)  /  2 ) )
4443simpli 445 . . . . . . . 8  |-  ( sin `  ( pi  /  6
) )  =  ( 1  /  2 )
4544negeqi 9255 . . . . . . 7  |-  -u ( sin `  ( pi  / 
6 ) )  = 
-u ( 1  / 
2 )
46 divneg 9665 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  -u (
1  /  2 )  =  ( -u 1  /  2 ) )
472, 26, 27, 46mp3an 1279 . . . . . . 7  |-  -u (
1  /  2 )  =  ( -u 1  /  2 )
4845, 47eqtri 2424 . . . . . 6  |-  -u ( sin `  ( pi  / 
6 ) )  =  ( -u 1  / 
2 )
4925, 42, 483eqtr3i 2432 . . . . 5  |-  ( cos `  ( ( 2  / 
3 )  x.  pi ) )  =  (
-u 1  /  2
)
50 sinhalfpip 20353 . . . . . . . . 9  |-  ( ( pi  /  6 )  e.  CC  ->  ( sin `  ( ( pi 
/  2 )  +  ( pi  /  6
) ) )  =  ( cos `  (
pi  /  6 ) ) )
5123, 50ax-mp 8 . . . . . . . 8  |-  ( sin `  ( ( pi  / 
2 )  +  ( pi  /  6 ) ) )  =  ( cos `  ( pi 
/  6 ) )
5241fveq2i 5690 . . . . . . . 8  |-  ( sin `  ( ( pi  / 
2 )  +  ( pi  /  6 ) ) )  =  ( sin `  ( ( 2  /  3 )  x.  pi ) )
5343simpri 449 . . . . . . . 8  |-  ( cos `  ( pi  /  6
) )  =  ( ( sqr `  3
)  /  2 )
5451, 52, 533eqtr3i 2432 . . . . . . 7  |-  ( sin `  ( ( 2  / 
3 )  x.  pi ) )  =  ( ( sqr `  3
)  /  2 )
5554oveq2i 6051 . . . . . 6  |-  ( _i  x.  ( sin `  (
( 2  /  3
)  x.  pi ) ) )  =  ( _i  x.  ( ( sqr `  3 )  /  2 ) )
56 3re 10027 . . . . . . . . 9  |-  3  e.  RR
57 3nn0 10195 . . . . . . . . . 10  |-  3  e.  NN0
5857nn0ge0i 10205 . . . . . . . . 9  |-  0  <_  3
59 resqrcl 12014 . . . . . . . . 9  |-  ( ( 3  e.  RR  /\  0  <_  3 )  -> 
( sqr `  3
)  e.  RR )
6056, 58, 59mp2an 654 . . . . . . . 8  |-  ( sqr `  3 )  e.  RR
6160recni 9058 . . . . . . 7  |-  ( sqr `  3 )  e.  CC
6214, 61, 26, 27divassi 9726 . . . . . 6  |-  ( ( _i  x.  ( sqr `  3 ) )  /  2 )  =  ( _i  x.  (
( sqr `  3
)  /  2 ) )
6355, 62eqtr4i 2427 . . . . 5  |-  ( _i  x.  ( sin `  (
( 2  /  3
)  x.  pi ) ) )  =  ( ( _i  x.  ( sqr `  3 ) )  /  2 )
6449, 63oveq12i 6052 . . . 4  |-  ( ( cos `  ( ( 2  /  3 )  x.  pi ) )  +  ( _i  x.  ( sin `  ( ( 2  /  3 )  x.  pi ) ) ) )  =  ( ( -u 1  / 
2 )  +  ( ( _i  x.  ( sqr `  3 ) )  /  2 ) )
659, 16mulcli 9051 . . . . 5  |-  ( ( 2  /  3 )  x.  pi )  e.  CC
66 efival 12708 . . . . 5  |-  ( ( ( 2  /  3
)  x.  pi )  e.  CC  ->  ( exp `  ( _i  x.  ( ( 2  / 
3 )  x.  pi ) ) )  =  ( ( cos `  (
( 2  /  3
)  x.  pi ) )  +  ( _i  x.  ( sin `  (
( 2  /  3
)  x.  pi ) ) ) ) )
6765, 66ax-mp 8 . . . 4  |-  ( exp `  ( _i  x.  (
( 2  /  3
)  x.  pi ) ) )  =  ( ( cos `  (
( 2  /  3
)  x.  pi ) )  +  ( _i  x.  ( sin `  (
( 2  /  3
)  x.  pi ) ) ) )
6814, 61mulcli 9051 . . . . 5  |-  ( _i  x.  ( sqr `  3
) )  e.  CC
691, 68, 26, 27divdiri 9727 . . . 4  |-  ( (
-u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )  =  ( ( -u
1  /  2 )  +  ( ( _i  x.  ( sqr `  3
) )  /  2
) )
7064, 67, 693eqtr4i 2434 . . 3  |-  ( exp `  ( _i  x.  (
( 2  /  3
)  x.  pi ) ) )  =  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )
7111, 19, 703eqtri 2428 . 2  |-  ( -u
1  ^ c  ( 2  /  3 ) )  =  ( (
-u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )
72 1z 10267 . . . 4  |-  1  e.  ZZ
73 root1cj 20593 . . . 4  |-  ( ( 3  e.  NN  /\  1  e.  ZZ )  ->  ( * `  (
( -u 1  ^ c 
( 2  /  3
) ) ^ 1 ) )  =  ( ( -u 1  ^ c  ( 2  / 
3 ) ) ^
( 3  -  1 ) ) )
746, 72, 73mp2an 654 . . 3  |-  ( * `
 ( ( -u
1  ^ c  ( 2  /  3 ) ) ^ 1 ) )  =  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ (
3  -  1 ) )
75 cxpcl 20518 . . . . . . . 8  |-  ( (
-u 1  e.  CC  /\  ( 2  /  3
)  e.  CC )  ->  ( -u 1  ^ c  ( 2  /  3 ) )  e.  CC )
761, 9, 75mp2an 654 . . . . . . 7  |-  ( -u
1  ^ c  ( 2  /  3 ) )  e.  CC
77 exp1 11342 . . . . . . 7  |-  ( (
-u 1  ^ c 
( 2  /  3
) )  e.  CC  ->  ( ( -u 1  ^ c  ( 2  /  3 ) ) ^ 1 )  =  ( -u 1  ^ c  ( 2  / 
3 ) ) )
7876, 77ax-mp 8 . . . . . 6  |-  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ 1 )  =  ( -u
1  ^ c  ( 2  /  3 ) )
7978, 71eqtri 2424 . . . . 5  |-  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ 1 )  =  ( (
-u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )
8079fveq2i 5690 . . . 4  |-  ( * `
 ( ( -u
1  ^ c  ( 2  /  3 ) ) ^ 1 ) )  =  ( * `
 ( ( -u
1  +  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) )
811, 68addcli 9050 . . . . . 6  |-  ( -u
1  +  ( _i  x.  ( sqr `  3
) ) )  e.  CC
8281, 26cjdivi 11951 . . . . 5  |-  ( 2  =/=  0  ->  (
* `  ( ( -u 1  +  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) )  =  ( ( * `  ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) ) )  /  (
* `  2 )
) )
8327, 82ax-mp 8 . . . 4  |-  ( * `
 ( ( -u
1  +  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) )  =  ( ( * `  ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) ) )  /  (
* `  2 )
)
841, 68cjaddi 11948 . . . . . 6  |-  ( * `
 ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) ) )  =  ( ( * `  -u 1 )  +  ( * `  ( _i  x.  ( sqr `  3
) ) ) )
85 1re 9046 . . . . . . . . 9  |-  1  e.  RR
8685renegcli 9318 . . . . . . . 8  |-  -u 1  e.  RR
87 cjre 11899 . . . . . . . 8  |-  ( -u
1  e.  RR  ->  ( * `  -u 1
)  =  -u 1
)
8886, 87ax-mp 8 . . . . . . 7  |-  ( * `
 -u 1 )  = 
-u 1
8914, 61cjmuli 11949 . . . . . . . 8  |-  ( * `
 ( _i  x.  ( sqr `  3 ) ) )  =  ( ( * `  _i )  x.  ( * `  ( sqr `  3
) ) )
90 cji 11919 . . . . . . . . 9  |-  ( * `
 _i )  = 
-u _i
91 cjre 11899 . . . . . . . . . 10  |-  ( ( sqr `  3 )  e.  RR  ->  (
* `  ( sqr `  3 ) )  =  ( sqr `  3
) )
9260, 91ax-mp 8 . . . . . . . . 9  |-  ( * `
 ( sqr `  3
) )  =  ( sqr `  3 )
9390, 92oveq12i 6052 . . . . . . . 8  |-  ( ( * `  _i )  x.  ( * `  ( sqr `  3 ) ) )  =  (
-u _i  x.  ( sqr `  3 ) )
9414, 61mulneg1i 9435 . . . . . . . 8  |-  ( -u _i  x.  ( sqr `  3
) )  =  -u ( _i  x.  ( sqr `  3 ) )
9589, 93, 943eqtri 2428 . . . . . . 7  |-  ( * `
 ( _i  x.  ( sqr `  3 ) ) )  =  -u ( _i  x.  ( sqr `  3 ) )
9688, 95oveq12i 6052 . . . . . 6  |-  ( ( * `  -u 1
)  +  ( * `
 ( _i  x.  ( sqr `  3 ) ) ) )  =  ( -u 1  + 
-u ( _i  x.  ( sqr `  3 ) ) )
971, 68negsubi 9334 . . . . . 6  |-  ( -u
1  +  -u (
_i  x.  ( sqr `  3 ) ) )  =  ( -u 1  -  ( _i  x.  ( sqr `  3 ) ) )
9884, 96, 973eqtri 2428 . . . . 5  |-  ( * `
 ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) ) )  =  ( -u 1  -  ( _i  x.  ( sqr `  3 ) ) )
99 cjre 11899 . . . . . 6  |-  ( 2  e.  RR  ->  (
* `  2 )  =  2 )
1005, 99ax-mp 8 . . . . 5  |-  ( * `
 2 )  =  2
10198, 100oveq12i 6052 . . . 4  |-  ( ( * `  ( -u
1  +  ( _i  x.  ( sqr `  3
) ) ) )  /  ( * ` 
2 ) )  =  ( ( -u 1  -  ( _i  x.  ( sqr `  3 ) ) )  /  2
)
10280, 83, 1013eqtri 2428 . . 3  |-  ( * `
 ( ( -u
1  ^ c  ( 2  /  3 ) ) ^ 1 ) )  =  ( (
-u 1  -  (
_i  x.  ( sqr `  3 ) ) )  /  2 )
103 3m1e2 10052 . . . 4  |-  ( 3  -  1 )  =  2
104103oveq2i 6051 . . 3  |-  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ (
3  -  1 ) )  =  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ 2 )
10574, 102, 1043eqtr3ri 2433 . 2  |-  ( (
-u 1  ^ c 
( 2  /  3
) ) ^ 2 )  =  ( (
-u 1  -  (
_i  x.  ( sqr `  3 ) ) )  /  2 )
10671, 105pm3.2i 442 1  |-  ( (
-u 1  ^ c 
( 2  /  3
) )  =  ( ( -u 1  +  ( _i  x.  ( sqr `  3 ) ) )  /  2 )  /\  ( ( -u
1  ^ c  ( 2  /  3 ) ) ^ 2 )  =  ( ( -u
1  -  ( _i  x.  ( sqr `  3
) ) )  / 
2 ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947   _ici 8948    + caddc 8949    x. cmul 8951    <_ cle 9077    - cmin 9247   -ucneg 9248    / cdiv 9633   NNcn 9956   2c2 10005   3c3 10006   6c6 10009   ZZcz 10238   ^cexp 11337   *ccj 11856   sqrcsqr 11993   expce 12619   sincsin 12621   cosccos 12622   picpi 12624   logclog 20405    ^ c ccxp 20406
This theorem is referenced by:  1cubr  20635
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-se 4502  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-pm 6980  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-fi 7374  df-sup 7404  df-oi 7435  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-xneg 10666  df-xadd 10667  df-xmul 10668  df-ioo 10876  df-ioc 10877  df-ico 10878  df-icc 10879  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-fac 11522  df-bc 11549  df-hash 11574  df-shft 11837  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-limsup 12220  df-clim 12237  df-rlim 12238  df-sum 12435  df-ef 12625  df-sin 12627  df-cos 12628  df-pi 12630  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-hom 13508  df-cco 13509  df-rest 13605  df-topn 13606  df-topgen 13622  df-pt 13623  df-prds 13626  df-xrs 13681  df-0g 13682  df-gsum 13683  df-qtop 13688  df-imas 13689  df-xps 13691  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-mulg 14770  df-cntz 15071  df-cmn 15369  df-psmet 16649  df-xmet 16650  df-met 16651  df-bl 16652  df-mopn 16653  df-fbas 16654  df-fg 16655  df-cnfld 16659  df-top 16918  df-bases 16920  df-topon 16921  df-topsp 16922  df-cld 17038  df-ntr 17039  df-cls 17040  df-nei 17117  df-lp 17155  df-perf 17156  df-cn 17245  df-cnp 17246  df-haus 17333  df-tx 17547  df-hmeo 17740  df-fil 17831  df-fm 17923  df-flim 17924  df-flf 17925  df-xms 18303  df-ms 18304  df-tms 18305  df-cncf 18861  df-limc 19706  df-dv 19707  df-log 20407  df-cxp 20408
  Copyright terms: Public domain W3C validator