Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvrat Unicode version

Theorem 1cvrat 29592
Description: Create an atom under an element covered by the lattice unit. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
1cvrat.b  |-  B  =  ( Base `  K
)
1cvrat.l  |-  .<_  =  ( le `  K )
1cvrat.j  |-  .\/  =  ( join `  K )
1cvrat.m  |-  ./\  =  ( meet `  K )
1cvrat.u  |-  .1.  =  ( 1. `  K )
1cvrat.c  |-  C  =  (  <o  `  K )
1cvrat.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
1cvrat  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( ( P  .\/  Q )  ./\  X )  e.  A )

Proof of Theorem 1cvrat
StepHypRef Expression
1 hllat 29480 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
213ad2ant1 978 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  K  e.  Lat )
3 simp21 990 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  P  e.  A )
4 1cvrat.b . . . . . . 7  |-  B  =  ( Base `  K
)
5 1cvrat.a . . . . . . 7  |-  A  =  ( Atoms `  K )
64, 5atbase 29406 . . . . . 6  |-  ( P  e.  A  ->  P  e.  B )
73, 6syl 16 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  P  e.  B )
8 simp22 991 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  Q  e.  A )
94, 5atbase 29406 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  B )
108, 9syl 16 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  Q  e.  B )
11 1cvrat.j . . . . . 6  |-  .\/  =  ( join `  K )
124, 11latjcom 14417 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .\/  Q
)  =  ( Q 
.\/  P ) )
132, 7, 10, 12syl3anc 1184 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( P  .\/  Q
)  =  ( Q 
.\/  P ) )
1413oveq1d 6037 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( ( P  .\/  Q )  ./\  X )  =  ( ( Q 
.\/  P )  ./\  X ) )
154, 11latjcl 14408 . . . . 5  |-  ( ( K  e.  Lat  /\  Q  e.  B  /\  P  e.  B )  ->  ( Q  .\/  P
)  e.  B )
162, 10, 7, 15syl3anc 1184 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( Q  .\/  P
)  e.  B )
17 simp23 992 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  X  e.  B )
18 1cvrat.m . . . . 5  |-  ./\  =  ( meet `  K )
194, 18latmcom 14433 . . . 4  |-  ( ( K  e.  Lat  /\  ( Q  .\/  P )  e.  B  /\  X  e.  B )  ->  (
( Q  .\/  P
)  ./\  X )  =  ( X  ./\  ( Q  .\/  P ) ) )
202, 16, 17, 19syl3anc 1184 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( ( Q  .\/  P )  ./\  X )  =  ( X  ./\  ( Q  .\/  P ) ) )
2114, 20eqtrd 2421 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( ( P  .\/  Q )  ./\  X )  =  ( X  ./\  ( Q  .\/  P ) ) )
22 simp1 957 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  K  e.  HL )
2317, 8, 33jca 1134 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( X  e.  B  /\  Q  e.  A  /\  P  e.  A
) )
24 simp31 993 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  P  =/=  Q )
2524necomd 2635 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  Q  =/=  P )
26 simp33 995 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  -.  P  .<_  X )
27 hlop 29479 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OP )
28273ad2ant1 978 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  K  e.  OP )
29 1cvrat.l . . . . . 6  |-  .<_  =  ( le `  K )
30 1cvrat.u . . . . . 6  |-  .1.  =  ( 1. `  K )
314, 29, 30ople1 29308 . . . . 5  |-  ( ( K  e.  OP  /\  Q  e.  B )  ->  Q  .<_  .1.  )
3228, 10, 31syl2anc 643 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  Q  .<_  .1.  )
33 simp32 994 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  X C  .1.  )
34 1cvrat.c . . . . . 6  |-  C  =  (  <o  `  K )
354, 29, 11, 30, 34, 51cvrjat 29591 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  ( X  .\/  P )  =  .1.  )
3622, 17, 3, 33, 26, 35syl32anc 1192 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( X  .\/  P
)  =  .1.  )
3732, 36breqtrrd 4181 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  Q  .<_  ( X  .\/  P ) )
384, 29, 11, 18, 5cvrat3 29558 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  P  e.  A
) )  ->  (
( Q  =/=  P  /\  -.  P  .<_  X  /\  Q  .<_  ( X  .\/  P ) )  ->  ( X  ./\  ( Q  .\/  P ) )  e.  A
) )
3938imp 419 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  P  e.  A
) )  /\  ( Q  =/=  P  /\  -.  P  .<_  X  /\  Q  .<_  ( X  .\/  P
) ) )  -> 
( X  ./\  ( Q  .\/  P ) )  e.  A )
4022, 23, 25, 26, 37, 39syl23anc 1191 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( X  ./\  ( Q  .\/  P ) )  e.  A )
4121, 40eqeltrd 2463 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( ( P  .\/  Q )  ./\  X )  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2552   class class class wbr 4155   ` cfv 5396  (class class class)co 6022   Basecbs 13398   lecple 13465   joincjn 14330   meetcmee 14331   1.cp1 14396   Latclat 14403   OPcops 29289    <o ccvr 29379   Atomscatm 29380   HLchlt 29467
This theorem is referenced by:  cdlemblem  29909  cdlemb  29910  lhpat  30159
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-undef 6481  df-riota 6487  df-poset 14332  df-plt 14344  df-lub 14360  df-glb 14361  df-join 14362  df-meet 14363  df-p0 14397  df-p1 14398  df-lat 14404  df-clat 14466  df-oposet 29293  df-ol 29295  df-oml 29296  df-covers 29383  df-ats 29384  df-atl 29415  df-cvlat 29439  df-hlat 29468
  Copyright terms: Public domain W3C validator