Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvrat Structured version   Unicode version

Theorem 1cvrat 30174
Description: Create an atom under an element covered by the lattice unit. Part of proof of Lemma B in [Crawley] p. 112. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
1cvrat.b  |-  B  =  ( Base `  K
)
1cvrat.l  |-  .<_  =  ( le `  K )
1cvrat.j  |-  .\/  =  ( join `  K )
1cvrat.m  |-  ./\  =  ( meet `  K )
1cvrat.u  |-  .1.  =  ( 1. `  K )
1cvrat.c  |-  C  =  (  <o  `  K )
1cvrat.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
1cvrat  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( ( P  .\/  Q )  ./\  X )  e.  A )

Proof of Theorem 1cvrat
StepHypRef Expression
1 hllat 30062 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
213ad2ant1 978 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  K  e.  Lat )
3 simp21 990 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  P  e.  A )
4 1cvrat.b . . . . . . 7  |-  B  =  ( Base `  K
)
5 1cvrat.a . . . . . . 7  |-  A  =  ( Atoms `  K )
64, 5atbase 29988 . . . . . 6  |-  ( P  e.  A  ->  P  e.  B )
73, 6syl 16 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  P  e.  B )
8 simp22 991 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  Q  e.  A )
94, 5atbase 29988 . . . . . 6  |-  ( Q  e.  A  ->  Q  e.  B )
108, 9syl 16 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  Q  e.  B )
11 1cvrat.j . . . . . 6  |-  .\/  =  ( join `  K )
124, 11latjcom 14478 . . . . 5  |-  ( ( K  e.  Lat  /\  P  e.  B  /\  Q  e.  B )  ->  ( P  .\/  Q
)  =  ( Q 
.\/  P ) )
132, 7, 10, 12syl3anc 1184 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( P  .\/  Q
)  =  ( Q 
.\/  P ) )
1413oveq1d 6088 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( ( P  .\/  Q )  ./\  X )  =  ( ( Q 
.\/  P )  ./\  X ) )
154, 11latjcl 14469 . . . . 5  |-  ( ( K  e.  Lat  /\  Q  e.  B  /\  P  e.  B )  ->  ( Q  .\/  P
)  e.  B )
162, 10, 7, 15syl3anc 1184 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( Q  .\/  P
)  e.  B )
17 simp23 992 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  X  e.  B )
18 1cvrat.m . . . . 5  |-  ./\  =  ( meet `  K )
194, 18latmcom 14494 . . . 4  |-  ( ( K  e.  Lat  /\  ( Q  .\/  P )  e.  B  /\  X  e.  B )  ->  (
( Q  .\/  P
)  ./\  X )  =  ( X  ./\  ( Q  .\/  P ) ) )
202, 16, 17, 19syl3anc 1184 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( ( Q  .\/  P )  ./\  X )  =  ( X  ./\  ( Q  .\/  P ) ) )
2114, 20eqtrd 2467 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( ( P  .\/  Q )  ./\  X )  =  ( X  ./\  ( Q  .\/  P ) ) )
22 simp1 957 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  K  e.  HL )
2317, 8, 33jca 1134 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( X  e.  B  /\  Q  e.  A  /\  P  e.  A
) )
24 simp31 993 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  P  =/=  Q )
2524necomd 2681 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  Q  =/=  P )
26 simp33 995 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  -.  P  .<_  X )
27 hlop 30061 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  OP )
28273ad2ant1 978 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  K  e.  OP )
29 1cvrat.l . . . . . 6  |-  .<_  =  ( le `  K )
30 1cvrat.u . . . . . 6  |-  .1.  =  ( 1. `  K )
314, 29, 30ople1 29890 . . . . 5  |-  ( ( K  e.  OP  /\  Q  e.  B )  ->  Q  .<_  .1.  )
3228, 10, 31syl2anc 643 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  Q  .<_  .1.  )
33 simp32 994 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  X C  .1.  )
34 1cvrat.c . . . . . 6  |-  C  =  (  <o  `  K )
354, 29, 11, 30, 34, 51cvrjat 30173 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  ( X  .\/  P )  =  .1.  )
3622, 17, 3, 33, 26, 35syl32anc 1192 . . . 4  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( X  .\/  P
)  =  .1.  )
3732, 36breqtrrd 4230 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  ->  Q  .<_  ( X  .\/  P ) )
384, 29, 11, 18, 5cvrat3 30140 . . . 4  |-  ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  P  e.  A
) )  ->  (
( Q  =/=  P  /\  -.  P  .<_  X  /\  Q  .<_  ( X  .\/  P ) )  ->  ( X  ./\  ( Q  .\/  P ) )  e.  A
) )
3938imp 419 . . 3  |-  ( ( ( K  e.  HL  /\  ( X  e.  B  /\  Q  e.  A  /\  P  e.  A
) )  /\  ( Q  =/=  P  /\  -.  P  .<_  X  /\  Q  .<_  ( X  .\/  P
) ) )  -> 
( X  ./\  ( Q  .\/  P ) )  e.  A )
4022, 23, 25, 26, 37, 39syl23anc 1191 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( X  ./\  ( Q  .\/  P ) )  e.  A )
4121, 40eqeltrd 2509 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  X  e.  B
)  /\  ( P  =/=  Q  /\  X C  .1.  /\  -.  P  .<_  X ) )  -> 
( ( P  .\/  Q )  ./\  X )  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Basecbs 13459   lecple 13526   joincjn 14391   meetcmee 14392   1.cp1 14457   Latclat 14464   OPcops 29871    <o ccvr 29961   Atomscatm 29962   HLchlt 30049
This theorem is referenced by:  cdlemblem  30491  cdlemb  30492  lhpat  30741
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14393  df-plt 14405  df-lub 14421  df-glb 14422  df-join 14423  df-meet 14424  df-p0 14458  df-p1 14459  df-lat 14465  df-clat 14527  df-oposet 29875  df-ol 29877  df-oml 29878  df-covers 29965  df-ats 29966  df-atl 29997  df-cvlat 30021  df-hlat 30050
  Copyright terms: Public domain W3C validator