Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvratex Unicode version

Theorem 1cvratex 29662
Description: There exists an atom less than an element covered by 1. (Contributed by NM, 7-May-2012.) (Revised by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
1cvratex.b  |-  B  =  ( Base `  K
)
1cvratex.s  |-  .<  =  ( lt `  K )
1cvratex.u  |-  .1.  =  ( 1. `  K )
1cvratex.c  |-  C  =  (  <o  `  K )
1cvratex.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
1cvratex  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  ->  E. p  e.  A  p  .<  X )
Distinct variable groups:    A, p    B, p    C, p    K, p    .< , p    .1. , p    X, p

Proof of Theorem 1cvratex
Dummy variables  q 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 955 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  ->  K  e.  HL )
2 1cvratex.b . . . . 5  |-  B  =  ( Base `  K
)
3 1cvratex.u . . . . 5  |-  .1.  =  ( 1. `  K )
4 eqid 2283 . . . . 5  |-  ( oc
`  K )  =  ( oc `  K
)
5 1cvratex.c . . . . 5  |-  C  =  (  <o  `  K )
6 1cvratex.a . . . . 5  |-  A  =  ( Atoms `  K )
72, 3, 4, 5, 61cvrco 29661 . . . 4  |-  ( ( K  e.  HL  /\  X  e.  B )  ->  ( X C  .1.  <->  ( ( oc `  K
) `  X )  e.  A ) )
87biimp3a 1281 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  ->  ( ( oc `  K ) `  X
)  e.  A )
9 eqid 2283 . . . 4  |-  ( join `  K )  =  (
join `  K )
109, 5, 62dim 29659 . . 3  |-  ( ( K  e.  HL  /\  ( ( oc `  K ) `  X
)  e.  A )  ->  E. q  e.  A  E. r  e.  A  ( ( ( oc
`  K ) `  X ) C ( ( ( oc `  K ) `  X
) ( join `  K
) q )  /\  ( ( ( oc
`  K ) `  X ) ( join `  K ) q ) C ( ( ( ( oc `  K
) `  X )
( join `  K )
q ) ( join `  K ) r ) ) )
111, 8, 10syl2anc 642 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  ->  E. q  e.  A  E. r  e.  A  ( ( ( oc
`  K ) `  X ) C ( ( ( oc `  K ) `  X
) ( join `  K
) q )  /\  ( ( ( oc
`  K ) `  X ) ( join `  K ) q ) C ( ( ( ( oc `  K
) `  X )
( join `  K )
q ) ( join `  K ) r ) ) )
12 simp11 985 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  K  e.  HL )
13 hlop 29552 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  OP )
1412, 13syl 15 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  K  e.  OP )
15 hllat 29553 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
1612, 15syl 15 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  K  e.  Lat )
17 simp12 986 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  X  e.  B )
182, 4opoccl 29384 . . . . . . . . 9  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  ( ( oc `  K ) `  X
)  e.  B )
1914, 17, 18syl2anc 642 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  (
( oc `  K
) `  X )  e.  B )
20 simp2l 981 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  q  e.  A )
212, 6atbase 29479 . . . . . . . . 9  |-  ( q  e.  A  ->  q  e.  B )
2220, 21syl 15 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  q  e.  B )
232, 9latjcl 14156 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( ( oc `  K ) `  X
)  e.  B  /\  q  e.  B )  ->  ( ( ( oc
`  K ) `  X ) ( join `  K ) q )  e.  B )
2416, 19, 22, 23syl3anc 1182 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  (
( ( oc `  K ) `  X
) ( join `  K
) q )  e.  B )
252, 4opoccl 29384 . . . . . . 7  |-  ( ( K  e.  OP  /\  ( ( ( oc
`  K ) `  X ) ( join `  K ) q )  e.  B )  -> 
( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) q ) )  e.  B )
2614, 24, 25syl2anc 642 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  (
( oc `  K
) `  ( (
( oc `  K
) `  X )
( join `  K )
q ) )  e.  B )
27 simp2r 982 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  r  e.  A )
282, 6atbase 29479 . . . . . . . . . . . . 13  |-  ( r  e.  A  ->  r  e.  B )
2927, 28syl 15 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  r  e.  B )
302, 9latjcl 14156 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  ( ( ( oc
`  K ) `  X ) ( join `  K ) q )  e.  B  /\  r  e.  B )  ->  (
( ( ( oc
`  K ) `  X ) ( join `  K ) q ) ( join `  K
) r )  e.  B )
3116, 24, 29, 30syl3anc 1182 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  (
( ( ( oc
`  K ) `  X ) ( join `  K ) q ) ( join `  K
) r )  e.  B )
322, 4opoccl 29384 . . . . . . . . . . 11  |-  ( ( K  e.  OP  /\  ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r )  e.  B )  -> 
( ( oc `  K ) `  (
( ( ( oc
`  K ) `  X ) ( join `  K ) q ) ( join `  K
) r ) )  e.  B )
3314, 31, 32syl2anc 642 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  (
( oc `  K
) `  ( (
( ( oc `  K ) `  X
) ( join `  K
) q ) (
join `  K )
r ) )  e.  B )
34 eqid 2283 . . . . . . . . . . 11  |-  ( le
`  K )  =  ( le `  K
)
35 eqid 2283 . . . . . . . . . . 11  |-  ( 0.
`  K )  =  ( 0. `  K
)
362, 34, 35op0le 29376 . . . . . . . . . 10  |-  ( ( K  e.  OP  /\  ( ( oc `  K ) `  (
( ( ( oc
`  K ) `  X ) ( join `  K ) q ) ( join `  K
) r ) )  e.  B )  -> 
( 0. `  K
) ( le `  K ) ( ( oc `  K ) `
 ( ( ( ( oc `  K
) `  X )
( join `  K )
q ) ( join `  K ) r ) ) )
3714, 33, 36syl2anc 642 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  ( 0. `  K ) ( le `  K ) ( ( oc `  K ) `  (
( ( ( oc
`  K ) `  X ) ( join `  K ) q ) ( join `  K
) r ) ) )
38 simp3r 984 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) )
39 1cvratex.s . . . . . . . . . . . 12  |-  .<  =  ( lt `  K )
402, 39, 5cvrlt 29460 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( ( ( oc
`  K ) `  X ) ( join `  K ) q )  e.  B  /\  (
( ( ( oc
`  K ) `  X ) ( join `  K ) q ) ( join `  K
) r )  e.  B )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) )  ->  ( (
( oc `  K
) `  X )
( join `  K )
q )  .<  (
( ( ( oc
`  K ) `  X ) ( join `  K ) q ) ( join `  K
) r ) )
4112, 24, 31, 38, 40syl31anc 1185 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  (
( ( oc `  K ) `  X
) ( join `  K
) q )  .< 
( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) )
422, 39, 4opltcon3b 29394 . . . . . . . . . . 11  |-  ( ( K  e.  OP  /\  ( ( ( oc
`  K ) `  X ) ( join `  K ) q )  e.  B  /\  (
( ( ( oc
`  K ) `  X ) ( join `  K ) q ) ( join `  K
) r )  e.  B )  ->  (
( ( ( oc
`  K ) `  X ) ( join `  K ) q ) 
.<  ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r )  <-> 
( ( oc `  K ) `  (
( ( ( oc
`  K ) `  X ) ( join `  K ) q ) ( join `  K
) r ) ) 
.<  ( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) q ) ) ) )
4314, 24, 31, 42syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  (
( ( ( oc
`  K ) `  X ) ( join `  K ) q ) 
.<  ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r )  <-> 
( ( oc `  K ) `  (
( ( ( oc
`  K ) `  X ) ( join `  K ) q ) ( join `  K
) r ) ) 
.<  ( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) q ) ) ) )
4441, 43mpbid 201 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  (
( oc `  K
) `  ( (
( ( oc `  K ) `  X
) ( join `  K
) q ) (
join `  K )
r ) )  .< 
( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) q ) ) )
45 hlpos 29555 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  Poset )
4612, 45syl 15 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  K  e.  Poset )
472, 35op0cl 29374 . . . . . . . . . . 11  |-  ( K  e.  OP  ->  ( 0. `  K )  e.  B )
4814, 47syl 15 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  ( 0. `  K )  e.  B )
492, 34, 39plelttr 14106 . . . . . . . . . 10  |-  ( ( K  e.  Poset  /\  (
( 0. `  K
)  e.  B  /\  ( ( oc `  K ) `  (
( ( ( oc
`  K ) `  X ) ( join `  K ) q ) ( join `  K
) r ) )  e.  B  /\  (
( oc `  K
) `  ( (
( oc `  K
) `  X )
( join `  K )
q ) )  e.  B ) )  -> 
( ( ( 0.
`  K ) ( le `  K ) ( ( oc `  K ) `  (
( ( ( oc
`  K ) `  X ) ( join `  K ) q ) ( join `  K
) r ) )  /\  ( ( oc
`  K ) `  ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) )  .<  ( ( oc `  K ) `  ( ( ( oc
`  K ) `  X ) ( join `  K ) q ) ) )  ->  ( 0. `  K )  .< 
( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) q ) ) ) )
5046, 48, 33, 26, 49syl13anc 1184 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  (
( ( 0. `  K ) ( le
`  K ) ( ( oc `  K
) `  ( (
( ( oc `  K ) `  X
) ( join `  K
) q ) (
join `  K )
r ) )  /\  ( ( oc `  K ) `  (
( ( ( oc
`  K ) `  X ) ( join `  K ) q ) ( join `  K
) r ) ) 
.<  ( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) q ) ) )  ->  ( 0. `  K )  .<  (
( oc `  K
) `  ( (
( oc `  K
) `  X )
( join `  K )
q ) ) ) )
5137, 44, 50mp2and 660 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  ( 0. `  K )  .< 
( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) q ) ) )
5239pltne 14096 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  ( 0. `  K )  e.  B  /\  (
( oc `  K
) `  ( (
( oc `  K
) `  X )
( join `  K )
q ) )  e.  B )  ->  (
( 0. `  K
)  .<  ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  X ) ( join `  K ) q ) )  ->  ( 0. `  K )  =/=  (
( oc `  K
) `  ( (
( oc `  K
) `  X )
( join `  K )
q ) ) ) )
5312, 48, 26, 52syl3anc 1182 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  (
( 0. `  K
)  .<  ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  X ) ( join `  K ) q ) )  ->  ( 0. `  K )  =/=  (
( oc `  K
) `  ( (
( oc `  K
) `  X )
( join `  K )
q ) ) ) )
5451, 53mpd 14 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  ( 0. `  K )  =/=  ( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) q ) ) )
5554necomd 2529 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  (
( oc `  K
) `  ( (
( oc `  K
) `  X )
( join `  K )
q ) )  =/=  ( 0. `  K
) )
562, 34, 35, 6atle 29625 . . . . . 6  |-  ( ( K  e.  HL  /\  ( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) q ) )  e.  B  /\  (
( oc `  K
) `  ( (
( oc `  K
) `  X )
( join `  K )
q ) )  =/=  ( 0. `  K
) )  ->  E. p  e.  A  p ( le `  K ) ( ( oc `  K
) `  ( (
( oc `  K
) `  X )
( join `  K )
q ) ) )
5712, 26, 55, 56syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  E. p  e.  A  p ( le `  K ) ( ( oc `  K
) `  ( (
( oc `  K
) `  X )
( join `  K )
q ) ) )
58 simp3l 983 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) )
592, 39, 5cvrlt 29460 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( ( oc `  K ) `  X
)  e.  B  /\  ( ( ( oc
`  K ) `  X ) ( join `  K ) q )  e.  B )  /\  ( ( oc `  K ) `  X
) C ( ( ( oc `  K
) `  X )
( join `  K )
q ) )  -> 
( ( oc `  K ) `  X
)  .<  ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) )
6012, 19, 24, 58, 59syl31anc 1185 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  (
( oc `  K
) `  X )  .<  ( ( ( oc
`  K ) `  X ) ( join `  K ) q ) )
612, 39, 4opltcon3b 29394 . . . . . . . . . . 11  |-  ( ( K  e.  OP  /\  ( ( oc `  K ) `  X
)  e.  B  /\  ( ( ( oc
`  K ) `  X ) ( join `  K ) q )  e.  B )  -> 
( ( ( oc
`  K ) `  X )  .<  (
( ( oc `  K ) `  X
) ( join `  K
) q )  <->  ( ( oc `  K ) `  ( ( ( oc
`  K ) `  X ) ( join `  K ) q ) )  .<  ( ( oc `  K ) `  ( ( oc `  K ) `  X
) ) ) )
6214, 19, 24, 61syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  (
( ( oc `  K ) `  X
)  .<  ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  <->  ( ( oc `  K ) `  ( ( ( oc
`  K ) `  X ) ( join `  K ) q ) )  .<  ( ( oc `  K ) `  ( ( oc `  K ) `  X
) ) ) )
6360, 62mpbid 201 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  (
( oc `  K
) `  ( (
( oc `  K
) `  X )
( join `  K )
q ) )  .< 
( ( oc `  K ) `  (
( oc `  K
) `  X )
) )
642, 4opococ 29385 . . . . . . . . . 10  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  ( ( oc `  K ) `  (
( oc `  K
) `  X )
)  =  X )
6514, 17, 64syl2anc 642 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  (
( oc `  K
) `  ( ( oc `  K ) `  X ) )  =  X )
6663, 65breqtrd 4047 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  (
( oc `  K
) `  ( (
( oc `  K
) `  X )
( join `  K )
q ) )  .<  X )
6766adantr 451 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  (
q  e.  A  /\  r  e.  A )  /\  ( ( ( oc
`  K ) `  X ) C ( ( ( oc `  K ) `  X
) ( join `  K
) q )  /\  ( ( ( oc
`  K ) `  X ) ( join `  K ) q ) C ( ( ( ( oc `  K
) `  X )
( join `  K )
q ) ( join `  K ) r ) ) )  /\  p  e.  A )  ->  (
( oc `  K
) `  ( (
( oc `  K
) `  X )
( join `  K )
q ) )  .<  X )
68 simpl11 1030 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  (
q  e.  A  /\  r  e.  A )  /\  ( ( ( oc
`  K ) `  X ) C ( ( ( oc `  K ) `  X
) ( join `  K
) q )  /\  ( ( ( oc
`  K ) `  X ) ( join `  K ) q ) C ( ( ( ( oc `  K
) `  X )
( join `  K )
q ) ( join `  K ) r ) ) )  /\  p  e.  A )  ->  K  e.  HL )
6968, 45syl 15 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  (
q  e.  A  /\  r  e.  A )  /\  ( ( ( oc
`  K ) `  X ) C ( ( ( oc `  K ) `  X
) ( join `  K
) q )  /\  ( ( ( oc
`  K ) `  X ) ( join `  K ) q ) C ( ( ( ( oc `  K
) `  X )
( join `  K )
q ) ( join `  K ) r ) ) )  /\  p  e.  A )  ->  K  e.  Poset )
702, 6atbase 29479 . . . . . . . . 9  |-  ( p  e.  A  ->  p  e.  B )
7170adantl 452 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  (
q  e.  A  /\  r  e.  A )  /\  ( ( ( oc
`  K ) `  X ) C ( ( ( oc `  K ) `  X
) ( join `  K
) q )  /\  ( ( ( oc
`  K ) `  X ) ( join `  K ) q ) C ( ( ( ( oc `  K
) `  X )
( join `  K )
q ) ( join `  K ) r ) ) )  /\  p  e.  A )  ->  p  e.  B )
7226adantr 451 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  (
q  e.  A  /\  r  e.  A )  /\  ( ( ( oc
`  K ) `  X ) C ( ( ( oc `  K ) `  X
) ( join `  K
) q )  /\  ( ( ( oc
`  K ) `  X ) ( join `  K ) q ) C ( ( ( ( oc `  K
) `  X )
( join `  K )
q ) ( join `  K ) r ) ) )  /\  p  e.  A )  ->  (
( oc `  K
) `  ( (
( oc `  K
) `  X )
( join `  K )
q ) )  e.  B )
73 simpl12 1031 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  (
q  e.  A  /\  r  e.  A )  /\  ( ( ( oc
`  K ) `  X ) C ( ( ( oc `  K ) `  X
) ( join `  K
) q )  /\  ( ( ( oc
`  K ) `  X ) ( join `  K ) q ) C ( ( ( ( oc `  K
) `  X )
( join `  K )
q ) ( join `  K ) r ) ) )  /\  p  e.  A )  ->  X  e.  B )
742, 34, 39plelttr 14106 . . . . . . . 8  |-  ( ( K  e.  Poset  /\  (
p  e.  B  /\  ( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) q ) )  e.  B  /\  X  e.  B ) )  -> 
( ( p ( le `  K ) ( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) q ) )  /\  ( ( oc
`  K ) `  ( ( ( oc
`  K ) `  X ) ( join `  K ) q ) )  .<  X )  ->  p  .<  X )
)
7569, 71, 72, 73, 74syl13anc 1184 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  (
q  e.  A  /\  r  e.  A )  /\  ( ( ( oc
`  K ) `  X ) C ( ( ( oc `  K ) `  X
) ( join `  K
) q )  /\  ( ( ( oc
`  K ) `  X ) ( join `  K ) q ) C ( ( ( ( oc `  K
) `  X )
( join `  K )
q ) ( join `  K ) r ) ) )  /\  p  e.  A )  ->  (
( p ( le
`  K ) ( ( oc `  K
) `  ( (
( oc `  K
) `  X )
( join `  K )
q ) )  /\  ( ( oc `  K ) `  (
( ( oc `  K ) `  X
) ( join `  K
) q ) ) 
.<  X )  ->  p  .<  X ) )
7667, 75mpan2d 655 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  (
q  e.  A  /\  r  e.  A )  /\  ( ( ( oc
`  K ) `  X ) C ( ( ( oc `  K ) `  X
) ( join `  K
) q )  /\  ( ( ( oc
`  K ) `  X ) ( join `  K ) q ) C ( ( ( ( oc `  K
) `  X )
( join `  K )
q ) ( join `  K ) r ) ) )  /\  p  e.  A )  ->  (
p ( le `  K ) ( ( oc `  K ) `
 ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) )  ->  p  .<  X ) )
7776reximdva 2655 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  ( E. p  e.  A  p ( le `  K ) ( ( oc `  K ) `
 ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) )  ->  E. p  e.  A  p  .<  X ) )
7857, 77mpd 14 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  /\  ( q  e.  A  /\  r  e.  A
)  /\  ( (
( oc `  K
) `  X ) C ( ( ( oc `  K ) `
 X ) (
join `  K )
q )  /\  (
( ( oc `  K ) `  X
) ( join `  K
) q ) C ( ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) ( join `  K ) r ) ) )  ->  E. p  e.  A  p  .<  X )
79783exp 1150 . . 3  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  ->  ( ( q  e.  A  /\  r  e.  A )  ->  (
( ( ( oc
`  K ) `  X ) C ( ( ( oc `  K ) `  X
) ( join `  K
) q )  /\  ( ( ( oc
`  K ) `  X ) ( join `  K ) q ) C ( ( ( ( oc `  K
) `  X )
( join `  K )
q ) ( join `  K ) r ) )  ->  E. p  e.  A  p  .<  X ) ) )
8079rexlimdvv 2673 . 2  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  ->  ( E. q  e.  A  E. r  e.  A  ( ( ( oc `  K ) `
 X ) C ( ( ( oc
`  K ) `  X ) ( join `  K ) q )  /\  ( ( ( oc `  K ) `
 X ) (
join `  K )
q ) C ( ( ( ( oc
`  K ) `  X ) ( join `  K ) q ) ( join `  K
) r ) )  ->  E. p  e.  A  p  .<  X ) )
8111, 80mpd 14 1  |-  ( ( K  e.  HL  /\  X  e.  B  /\  X C  .1.  )  ->  E. p  e.  A  p  .<  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   occoc 13216   Posetcpo 14074   ltcplt 14075   joincjn 14078   0.cp0 14143   1.cp1 14144   Latclat 14151   OPcops 29362    <o ccvr 29452   Atomscatm 29453   HLchlt 29540
This theorem is referenced by:  1cvratlt  29663  lhpexlt  30191
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541
  Copyright terms: Public domain W3C validator