Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvrjat Structured version   Unicode version

Theorem 1cvrjat 30334
Description: An element covered by the lattice unit, when joined with an atom not under it, equals the lattice unit. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
1cvrjat.b  |-  B  =  ( Base `  K
)
1cvrjat.l  |-  .<_  =  ( le `  K )
1cvrjat.j  |-  .\/  =  ( join `  K )
1cvrjat.u  |-  .1.  =  ( 1. `  K )
1cvrjat.c  |-  C  =  (  <o  `  K )
1cvrjat.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
1cvrjat  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  ( X  .\/  P )  =  .1.  )

Proof of Theorem 1cvrjat
StepHypRef Expression
1 simprr 735 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  -.  P  .<_  X )
2 1cvrjat.b . . . . . . . 8  |-  B  =  ( Base `  K
)
3 1cvrjat.l . . . . . . . 8  |-  .<_  =  ( le `  K )
4 1cvrjat.j . . . . . . . 8  |-  .\/  =  ( join `  K )
5 1cvrjat.c . . . . . . . 8  |-  C  =  (  <o  `  K )
6 1cvrjat.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
72, 3, 4, 5, 6cvr1 30269 . . . . . . 7  |-  ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  ->  ( -.  P  .<_  X  <-> 
X C ( X 
.\/  P ) ) )
87adantr 453 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  ( -.  P  .<_  X  <->  X C
( X  .\/  P
) ) )
91, 8mpbid 203 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  X C ( X  .\/  P ) )
10 simpl1 961 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  K  e.  HL )
11 hlop 30222 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OP )
1210, 11syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  K  e.  OP )
13 simpl2 962 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  X  e.  B )
14 hllat 30223 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  Lat )
1510, 14syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  K  e.  Lat )
16 simpl3 963 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  P  e.  A )
172, 6atbase 30149 . . . . . . . 8  |-  ( P  e.  A  ->  P  e.  B )
1816, 17syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  P  e.  B )
192, 4latjcl 14481 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  P  e.  B )  ->  ( X  .\/  P
)  e.  B )
2015, 13, 18, 19syl3anc 1185 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  ( X  .\/  P )  e.  B )
21 eqid 2438 . . . . . . 7  |-  ( oc
`  K )  =  ( oc `  K
)
222, 21, 5cvrcon3b 30137 . . . . . 6  |-  ( ( K  e.  OP  /\  X  e.  B  /\  ( X  .\/  P )  e.  B )  -> 
( X C ( X  .\/  P )  <-> 
( ( oc `  K ) `  ( X  .\/  P ) ) C ( ( oc
`  K ) `  X ) ) )
2312, 13, 20, 22syl3anc 1185 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  ( X C ( X  .\/  P )  <->  ( ( oc
`  K ) `  ( X  .\/  P ) ) C ( ( oc `  K ) `
 X ) ) )
249, 23mpbid 203 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  (
( oc `  K
) `  ( X  .\/  P ) ) C ( ( oc `  K ) `  X
) )
25 hlatl 30220 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  AtLat )
2610, 25syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  K  e.  AtLat )
272, 21opoccl 30054 . . . . . 6  |-  ( ( K  e.  OP  /\  ( X  .\/  P )  e.  B )  -> 
( ( oc `  K ) `  ( X  .\/  P ) )  e.  B )
2812, 20, 27syl2anc 644 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  (
( oc `  K
) `  ( X  .\/  P ) )  e.  B )
292, 21opoccl 30054 . . . . . . 7  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  ( ( oc `  K ) `  X
)  e.  B )
3012, 13, 29syl2anc 644 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  (
( oc `  K
) `  X )  e.  B )
31 eqid 2438 . . . . . . . . 9  |-  ( 0.
`  K )  =  ( 0. `  K
)
32 1cvrjat.u . . . . . . . . 9  |-  .1.  =  ( 1. `  K )
3331, 32, 21opoc1 30062 . . . . . . . 8  |-  ( K  e.  OP  ->  (
( oc `  K
) `  .1.  )  =  ( 0. `  K ) )
3410, 11, 333syl 19 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  (
( oc `  K
) `  .1.  )  =  ( 0. `  K ) )
35 simprl 734 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  X C  .1.  )
362, 32op1cl 30045 . . . . . . . . . 10  |-  ( K  e.  OP  ->  .1.  e.  B )
3710, 11, 363syl 19 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  .1.  e.  B )
382, 21, 5cvrcon3b 30137 . . . . . . . . 9  |-  ( ( K  e.  OP  /\  X  e.  B  /\  .1.  e.  B )  -> 
( X C  .1.  <->  ( ( oc `  K
) `  .1.  ) C ( ( oc
`  K ) `  X ) ) )
3912, 13, 37, 38syl3anc 1185 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  ( X C  .1.  <->  ( ( oc `  K ) `  .1.  ) C ( ( oc `  K ) `
 X ) ) )
4035, 39mpbid 203 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  (
( oc `  K
) `  .1.  ) C ( ( oc
`  K ) `  X ) )
4134, 40eqbrtrrd 4236 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  ( 0. `  K ) C ( ( oc `  K ) `  X
) )
422, 31, 5, 6isat 30146 . . . . . . 7  |-  ( K  e.  HL  ->  (
( ( oc `  K ) `  X
)  e.  A  <->  ( (
( oc `  K
) `  X )  e.  B  /\  ( 0. `  K ) C ( ( oc `  K ) `  X
) ) ) )
4310, 42syl 16 . . . . . 6  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  (
( ( oc `  K ) `  X
)  e.  A  <->  ( (
( oc `  K
) `  X )  e.  B  /\  ( 0. `  K ) C ( ( oc `  K ) `  X
) ) ) )
4430, 41, 43mpbir2and 890 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  (
( oc `  K
) `  X )  e.  A )
452, 3, 31, 5, 6atcvreq0 30174 . . . . 5  |-  ( ( K  e.  AtLat  /\  (
( oc `  K
) `  ( X  .\/  P ) )  e.  B  /\  ( ( oc `  K ) `
 X )  e.  A )  ->  (
( ( oc `  K ) `  ( X  .\/  P ) ) C ( ( oc
`  K ) `  X )  <->  ( ( oc `  K ) `  ( X  .\/  P ) )  =  ( 0.
`  K ) ) )
4626, 28, 44, 45syl3anc 1185 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  (
( ( oc `  K ) `  ( X  .\/  P ) ) C ( ( oc
`  K ) `  X )  <->  ( ( oc `  K ) `  ( X  .\/  P ) )  =  ( 0.
`  K ) ) )
4724, 46mpbid 203 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  (
( oc `  K
) `  ( X  .\/  P ) )  =  ( 0. `  K
) )
4847fveq2d 5734 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  (
( oc `  K
) `  ( ( oc `  K ) `  ( X  .\/  P ) ) )  =  ( ( oc `  K
) `  ( 0. `  K ) ) )
492, 21opococ 30055 . . 3  |-  ( ( K  e.  OP  /\  ( X  .\/  P )  e.  B )  -> 
( ( oc `  K ) `  (
( oc `  K
) `  ( X  .\/  P ) ) )  =  ( X  .\/  P ) )
5012, 20, 49syl2anc 644 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  (
( oc `  K
) `  ( ( oc `  K ) `  ( X  .\/  P ) ) )  =  ( X  .\/  P ) )
5131, 32, 21opoc0 30063 . . 3  |-  ( K  e.  OP  ->  (
( oc `  K
) `  ( 0. `  K ) )  =  .1.  )
5210, 11, 513syl 19 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  (
( oc `  K
) `  ( 0. `  K ) )  =  .1.  )
5348, 50, 523eqtr3d 2478 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  P  e.  A )  /\  ( X C  .1. 
/\  -.  P  .<_  X ) )  ->  ( X  .\/  P )  =  .1.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   class class class wbr 4214   ` cfv 5456  (class class class)co 6083   Basecbs 13471   lecple 13538   occoc 13539   joincjn 14403   0.cp0 14468   1.cp1 14469   Latclat 14476   OPcops 30032    <o ccvr 30122   Atomscatm 30123   AtLatcal 30124   HLchlt 30210
This theorem is referenced by:  1cvrat  30335  lhpjat1  30879
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-undef 6545  df-riota 6551  df-poset 14405  df-plt 14417  df-lub 14433  df-glb 14434  df-join 14435  df-meet 14436  df-p0 14470  df-p1 14471  df-lat 14477  df-clat 14539  df-oposet 30036  df-ol 30038  df-oml 30039  df-covers 30126  df-ats 30127  df-atl 30158  df-cvlat 30182  df-hlat 30211
  Copyright terms: Public domain W3C validator