MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1div0apr Unicode version

Theorem 1div0apr 21273
Description: Division by zero is forbidden! If we try, we encounter the DO NOT ENTER sign, which in mathematics means it is foolhardy to venture any further, possibly putting the underlying fabric of reality at risk. Based on a dare by David A. Wheeler. (Contributed by Mario Carneiro, 1-Apr-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
1div0apr  |-  ( 1  /  0 )  =  (/)

Proof of Theorem 1div0apr
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-div 9571 . . 3  |-  /  =  ( x  e.  CC ,  y  e.  ( CC  \  { 0 } )  |->  ( iota_ z  e.  CC ( y  x.  z )  =  x ) )
2 riotaex 6450 . . 3  |-  ( iota_ z  e.  CC ( y  x.  z )  =  x )  e.  _V
31, 2dmmpt2 6321 . 2  |-  dom  /  =  ( CC  X.  ( CC  \  { 0 } ) )
4 eqid 2366 . . 3  |-  0  =  0
5 eldifsni 3843 . . . . 5  |-  ( 0  e.  ( CC  \  { 0 } )  ->  0  =/=  0
)
65adantl 452 . . . 4  |-  ( ( 1  e.  CC  /\  0  e.  ( CC  \  { 0 } ) )  ->  0  =/=  0 )
76necon2bi 2575 . . 3  |-  ( 0  =  0  ->  -.  ( 1  e.  CC  /\  0  e.  ( CC 
\  { 0 } ) ) )
84, 7ax-mp 8 . 2  |-  -.  (
1  e.  CC  /\  0  e.  ( CC  \  { 0 } ) )
9 ndmovg 6130 . 2  |-  ( ( dom  /  =  ( CC  X.  ( CC 
\  { 0 } ) )  /\  -.  ( 1  e.  CC  /\  0  e.  ( CC 
\  { 0 } ) ) )  -> 
( 1  /  0
)  =  (/) )
103, 8, 9mp2an 653 1  |-  ( 1  /  0 )  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 358    = wceq 1647    e. wcel 1715    =/= wne 2529    \ cdif 3235   (/)c0 3543   {csn 3729    X. cxp 4790   dom cdm 4792  (class class class)co 5981   iota_crio 6439   CCcc 8882   0cc0 8884   1c1 8885    x. cmul 8889    / cdiv 9570
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-riota 6446  df-div 9571
  Copyright terms: Public domain W3C validator