MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1sdom Unicode version

Theorem 1sdom 7274
Description: A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom 7142.) (Contributed by Mario Carneiro, 12-Jan-2013.)
Assertion
Ref Expression
1sdom  |-  ( A  e.  V  ->  ( 1o  ~<  A  <->  E. x  e.  A  E. y  e.  A  -.  x  =  y ) )
Distinct variable group:    x, y, A
Allowed substitution hints:    V( x, y)

Proof of Theorem 1sdom
Dummy variables  f 
a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4180 . 2  |-  ( a  =  A  ->  ( 1o  ~<  a  <->  1o  ~<  A ) )
2 rexeq 2869 . . 3  |-  ( a  =  A  ->  ( E. y  e.  a  -.  x  =  y  <->  E. y  e.  A  -.  x  =  y )
)
32rexeqbi1dv 2877 . 2  |-  ( a  =  A  ->  ( E. x  e.  a  E. y  e.  a  -.  x  =  y  <->  E. x  e.  A  E. y  e.  A  -.  x  =  y )
)
4 1onn 6845 . . . 4  |-  1o  e.  om
5 sucdom 7267 . . . 4  |-  ( 1o  e.  om  ->  ( 1o  ~<  a  <->  suc  1o  ~<_  a ) )
64, 5ax-mp 8 . . 3  |-  ( 1o 
~<  a  <->  suc  1o  ~<_  a )
7 df-2o 6688 . . . 4  |-  2o  =  suc  1o
87breq1i 4183 . . 3  |-  ( 2o  ~<_  a  <->  suc  1o  ~<_  a )
9 2dom 7142 . . . 4  |-  ( 2o  ~<_  a  ->  E. x  e.  a  E. y  e.  a  -.  x  =  y )
10 df2o3 6700 . . . . 5  |-  2o  =  { (/) ,  1o }
11 vex 2923 . . . . . . . . . . . 12  |-  x  e. 
_V
12 vex 2923 . . . . . . . . . . . 12  |-  y  e. 
_V
13 0ex 4303 . . . . . . . . . . . 12  |-  (/)  e.  _V
144elexi 2929 . . . . . . . . . . . 12  |-  1o  e.  _V
1511, 12, 13, 14funpr 5465 . . . . . . . . . . 11  |-  ( x  =/=  y  ->  Fun  {
<. x ,  (/) >. ,  <. y ,  1o >. } )
16 df-ne 2573 . . . . . . . . . . 11  |-  ( x  =/=  y  <->  -.  x  =  y )
17 1n0 6702 . . . . . . . . . . . . . . 15  |-  1o  =/=  (/)
1817necomi 2653 . . . . . . . . . . . . . 14  |-  (/)  =/=  1o
1913, 14, 11, 12fpr 5877 . . . . . . . . . . . . . 14  |-  ( (/)  =/=  1o  ->  { <. (/) ,  x >. ,  <. 1o ,  y
>. } : { (/) ,  1o } --> { x ,  y } )
2018, 19ax-mp 8 . . . . . . . . . . . . 13  |-  { <. (/)
,  x >. ,  <. 1o ,  y >. } : { (/) ,  1o } --> { x ,  y }
21 df-f1 5422 . . . . . . . . . . . . 13  |-  ( {
<. (/) ,  x >. , 
<. 1o ,  y >. } : { (/) ,  1o } -1-1-> { x ,  y }  <->  ( { <. (/)
,  x >. ,  <. 1o ,  y >. } : { (/) ,  1o } --> { x ,  y }  /\  Fun  `' { <. (/) ,  x >. , 
<. 1o ,  y >. } ) )
2220, 21mpbiran 885 . . . . . . . . . . . 12  |-  ( {
<. (/) ,  x >. , 
<. 1o ,  y >. } : { (/) ,  1o } -1-1-> { x ,  y }  <->  Fun  `' { <. (/)
,  x >. ,  <. 1o ,  y >. } )
2313, 11cnvsn 5315 . . . . . . . . . . . . . . 15  |-  `' { <.
(/) ,  x >. }  =  { <. x ,  (/) >. }
2414, 12cnvsn 5315 . . . . . . . . . . . . . . 15  |-  `' { <. 1o ,  y >. }  =  { <. y ,  1o >. }
2523, 24uneq12i 3463 . . . . . . . . . . . . . 14  |-  ( `' { <. (/) ,  x >. }  u.  `' { <. 1o ,  y >. } )  =  ( { <. x ,  (/) >. }  u.  { <. y ,  1o >. } )
26 df-pr 3785 . . . . . . . . . . . . . . . 16  |-  { <. (/)
,  x >. ,  <. 1o ,  y >. }  =  ( { <. (/) ,  x >. }  u.  { <. 1o , 
y >. } )
2726cnveqi 5010 . . . . . . . . . . . . . . 15  |-  `' { <.
(/) ,  x >. , 
<. 1o ,  y >. }  =  `' ( { <. (/) ,  x >. }  u.  { <. 1o , 
y >. } )
28 cnvun 5240 . . . . . . . . . . . . . . 15  |-  `' ( { <. (/) ,  x >. }  u.  { <. 1o , 
y >. } )  =  ( `' { <. (/)
,  x >. }  u.  `' { <. 1o ,  y
>. } )
2927, 28eqtri 2428 . . . . . . . . . . . . . 14  |-  `' { <.
(/) ,  x >. , 
<. 1o ,  y >. }  =  ( `' { <. (/) ,  x >. }  u.  `' { <. 1o ,  y >. } )
30 df-pr 3785 . . . . . . . . . . . . . 14  |-  { <. x ,  (/) >. ,  <. y ,  1o >. }  =  ( { <. x ,  (/) >. }  u.  { <. y ,  1o >. } )
3125, 29, 303eqtr4i 2438 . . . . . . . . . . . . 13  |-  `' { <.
(/) ,  x >. , 
<. 1o ,  y >. }  =  { <. x ,  (/) >. ,  <. y ,  1o >. }
3231funeqi 5437 . . . . . . . . . . . 12  |-  ( Fun  `' { <. (/) ,  x >. , 
<. 1o ,  y >. } 
<->  Fun  { <. x ,  (/) >. ,  <. y ,  1o >. } )
3322, 32bitr2i 242 . . . . . . . . . . 11  |-  ( Fun 
{ <. x ,  (/) >. ,  <. y ,  1o >. }  <->  { <. (/) ,  x >. , 
<. 1o ,  y >. } : { (/) ,  1o } -1-1-> { x ,  y } )
3415, 16, 333imtr3i 257 . . . . . . . . . 10  |-  ( -.  x  =  y  ->  { <. (/) ,  x >. , 
<. 1o ,  y >. } : { (/) ,  1o } -1-1-> { x ,  y } )
35 prssi 3918 . . . . . . . . . 10  |-  ( ( x  e.  a  /\  y  e.  a )  ->  { x ,  y }  C_  a )
36 f1ss 5607 . . . . . . . . . 10  |-  ( ( { <. (/) ,  x >. , 
<. 1o ,  y >. } : { (/) ,  1o } -1-1-> { x ,  y }  /\  { x ,  y }  C_  a )  ->  { <. (/)
,  x >. ,  <. 1o ,  y >. } : { (/) ,  1o } -1-1-> a )
3734, 35, 36syl2an 464 . . . . . . . . 9  |-  ( ( -.  x  =  y  /\  ( x  e.  a  /\  y  e.  a ) )  ->  { <. (/) ,  x >. , 
<. 1o ,  y >. } : { (/) ,  1o } -1-1-> a )
38 prex 4370 . . . . . . . . . 10  |-  { <. (/)
,  x >. ,  <. 1o ,  y >. }  e.  _V
39 f1eq1 5597 . . . . . . . . . 10  |-  ( f  =  { <. (/) ,  x >. ,  <. 1o ,  y
>. }  ->  ( f : { (/) ,  1o } -1-1-> a  <->  { <. (/) ,  x >. , 
<. 1o ,  y >. } : { (/) ,  1o } -1-1-> a ) )
4038, 39spcev 3007 . . . . . . . . 9  |-  ( {
<. (/) ,  x >. , 
<. 1o ,  y >. } : { (/) ,  1o } -1-1-> a  ->  E. f 
f : { (/) ,  1o } -1-1-> a )
4137, 40syl 16 . . . . . . . 8  |-  ( ( -.  x  =  y  /\  ( x  e.  a  /\  y  e.  a ) )  ->  E. f  f : { (/) ,  1o } -1-1-> a )
42 vex 2923 . . . . . . . . 9  |-  a  e. 
_V
4342brdom 7083 . . . . . . . 8  |-  ( {
(/) ,  1o }  ~<_  a  <->  E. f 
f : { (/) ,  1o } -1-1-> a )
4441, 43sylibr 204 . . . . . . 7  |-  ( ( -.  x  =  y  /\  ( x  e.  a  /\  y  e.  a ) )  ->  { (/) ,  1o }  ~<_  a )
4544expcom 425 . . . . . 6  |-  ( ( x  e.  a  /\  y  e.  a )  ->  ( -.  x  =  y  ->  { (/) ,  1o }  ~<_  a ) )
4645rexlimivv 2799 . . . . 5  |-  ( E. x  e.  a  E. y  e.  a  -.  x  =  y  ->  {
(/) ,  1o }  ~<_  a )
4710, 46syl5eqbr 4209 . . . 4  |-  ( E. x  e.  a  E. y  e.  a  -.  x  =  y  ->  2o  ~<_  a )
489, 47impbii 181 . . 3  |-  ( 2o  ~<_  a  <->  E. x  e.  a  E. y  e.  a  -.  x  =  y )
496, 8, 483bitr2i 265 . 2  |-  ( 1o 
~<  a  <->  E. x  e.  a  E. y  e.  a  -.  x  =  y )
501, 3, 49vtoclbg 2976 1  |-  ( A  e.  V  ->  ( 1o  ~<  A  <->  E. x  e.  A  E. y  e.  A  -.  x  =  y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    e. wcel 1721    =/= wne 2571   E.wrex 2671    u. cun 3282    C_ wss 3284   (/)c0 3592   {csn 3778   {cpr 3779   <.cop 3781   class class class wbr 4176   suc csuc 4547   omcom 4808   `'ccnv 4840   Fun wfun 5411   -->wf 5413   -1-1->wf1 5414   1oc1o 6680   2oc2o 6681    ~<_ cdom 7070    ~< csdm 7071
This theorem is referenced by:  unxpdomlem3  7278  frgpnabl  15445  isnzr2  16293
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-rab 2679  df-v 2922  df-sbc 3126  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-br 4177  df-opab 4231  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-1o 6687  df-2o 6688  df-er 6868  df-en 7073  df-dom 7074  df-sdom 7075
  Copyright terms: Public domain W3C validator