MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1st2ndprf Unicode version

Theorem 1st2ndprf 14230
Description: Break a functor into a product category into first and second projections. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
1st2ndprf.t  |-  T  =  ( D  X.c  E )
1st2ndprf.f  |-  ( ph  ->  F  e.  ( C 
Func  T ) )
1st2ndprf.d  |-  ( ph  ->  D  e.  Cat )
1st2ndprf.e  |-  ( ph  ->  E  e.  Cat )
Assertion
Ref Expression
1st2ndprf  |-  ( ph  ->  F  =  ( ( ( D  1stF  E )  o.func  F ) ⟨,⟩F  ( ( D  2ndF  E )  o.func 
F ) ) )

Proof of Theorem 1st2ndprf
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2387 . . . . . 6  |-  ( Base `  C )  =  (
Base `  C )
2 1st2ndprf.t . . . . . . 7  |-  T  =  ( D  X.c  E )
3 eqid 2387 . . . . . . 7  |-  ( Base `  D )  =  (
Base `  D )
4 eqid 2387 . . . . . . 7  |-  ( Base `  E )  =  (
Base `  E )
52, 3, 4xpcbas 14202 . . . . . 6  |-  ( (
Base `  D )  X.  ( Base `  E
) )  =  (
Base `  T )
6 relfunc 13986 . . . . . . 7  |-  Rel  ( C  Func  T )
7 1st2ndprf.f . . . . . . 7  |-  ( ph  ->  F  e.  ( C 
Func  T ) )
8 1st2ndbr 6335 . . . . . . 7  |-  ( ( Rel  ( C  Func  T )  /\  F  e.  ( C  Func  T
) )  ->  ( 1st `  F ) ( C  Func  T )
( 2nd `  F
) )
96, 7, 8sylancr 645 . . . . . 6  |-  ( ph  ->  ( 1st `  F
) ( C  Func  T ) ( 2nd `  F
) )
101, 5, 9funcf1 13990 . . . . 5  |-  ( ph  ->  ( 1st `  F
) : ( Base `  C ) --> ( (
Base `  D )  X.  ( Base `  E
) ) )
1110feqmptd 5718 . . . 4  |-  ( ph  ->  ( 1st `  F
)  =  ( x  e.  ( Base `  C
)  |->  ( ( 1st `  F ) `  x
) ) )
1210ffvelrnda 5809 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  F ) `  x )  e.  ( ( Base `  D
)  X.  ( Base `  E ) ) )
13 1st2nd2 6325 . . . . . . 7  |-  ( ( ( 1st `  F
) `  x )  e.  ( ( Base `  D
)  X.  ( Base `  E ) )  -> 
( ( 1st `  F
) `  x )  =  <. ( 1st `  (
( 1st `  F
) `  x )
) ,  ( 2nd `  ( ( 1st `  F
) `  x )
) >. )
1412, 13syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  F ) `  x )  =  <. ( 1st `  ( ( 1st `  F ) `
 x ) ) ,  ( 2nd `  (
( 1st `  F
) `  x )
) >. )
157adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  F  e.  ( C  Func  T ) )
16 1st2ndprf.d . . . . . . . . . . 11  |-  ( ph  ->  D  e.  Cat )
17 1st2ndprf.e . . . . . . . . . . 11  |-  ( ph  ->  E  e.  Cat )
18 eqid 2387 . . . . . . . . . . 11  |-  ( D  1stF  E )  =  ( D  1stF  E )
192, 16, 17, 181stfcl 14221 . . . . . . . . . 10  |-  ( ph  ->  ( D  1stF  E )  e.  ( T  Func  D
) )
2019adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( D  1stF  E )  e.  ( T 
Func  D ) )
21 simpr 448 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  x  e.  ( Base `  C )
)
221, 15, 20, 21cofu1 14008 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  ( ( D  1stF  E )  o.func  F )
) `  x )  =  ( ( 1st `  ( D  1stF  E )
) `  ( ( 1st `  F ) `  x ) ) )
23 eqid 2387 . . . . . . . . 9  |-  (  Hom  `  T )  =  (  Hom  `  T )
2416adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  D  e.  Cat )
2517adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  E  e.  Cat )
262, 5, 23, 24, 25, 18, 121stf1 14216 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  ( D  1stF  E ) ) `  ( ( 1st `  F ) `
 x ) )  =  ( 1st `  (
( 1st `  F
) `  x )
) )
2722, 26eqtrd 2419 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  ( ( D  1stF  E )  o.func  F )
) `  x )  =  ( 1st `  (
( 1st `  F
) `  x )
) )
28 eqid 2387 . . . . . . . . . . 11  |-  ( D  2ndF  E )  =  ( D  2ndF  E )
292, 16, 17, 282ndfcl 14222 . . . . . . . . . 10  |-  ( ph  ->  ( D  2ndF  E )  e.  ( T  Func  E
) )
3029adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( D  2ndF  E )  e.  ( T 
Func  E ) )
311, 15, 30, 21cofu1 14008 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  ( ( D  2ndF  E )  o.func  F )
) `  x )  =  ( ( 1st `  ( D  2ndF  E )
) `  ( ( 1st `  F ) `  x ) ) )
322, 5, 23, 24, 25, 28, 122ndf1 14219 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  ( D  2ndF  E ) ) `  ( ( 1st `  F ) `
 x ) )  =  ( 2nd `  (
( 1st `  F
) `  x )
) )
3331, 32eqtrd 2419 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  ( ( D  2ndF  E )  o.func  F )
) `  x )  =  ( 2nd `  (
( 1st `  F
) `  x )
) )
3427, 33opeq12d 3934 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  <. ( ( 1st `  ( ( D  1stF  E )  o.func  F )
) `  x ) ,  ( ( 1st `  ( ( D  2ndF  E )  o.func 
F ) ) `  x ) >.  =  <. ( 1st `  ( ( 1st `  F ) `
 x ) ) ,  ( 2nd `  (
( 1st `  F
) `  x )
) >. )
3514, 34eqtr4d 2422 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  F ) `  x )  =  <. ( ( 1st `  (
( D  1stF  E )  o.func  F ) ) `  x
) ,  ( ( 1st `  ( ( D  2ndF  E )  o.func  F )
) `  x ) >. )
3635mpteq2dva 4236 . . . 4  |-  ( ph  ->  ( x  e.  (
Base `  C )  |->  ( ( 1st `  F
) `  x )
)  =  ( x  e.  ( Base `  C
)  |->  <. ( ( 1st `  ( ( D  1stF  E )  o.func 
F ) ) `  x ) ,  ( ( 1st `  (
( D  2ndF  E )  o.func  F ) ) `  x
) >. ) )
3711, 36eqtrd 2419 . . 3  |-  ( ph  ->  ( 1st `  F
)  =  ( x  e.  ( Base `  C
)  |->  <. ( ( 1st `  ( ( D  1stF  E )  o.func 
F ) ) `  x ) ,  ( ( 1st `  (
( D  2ndF  E )  o.func  F ) ) `  x
) >. ) )
381, 9funcfn2 13993 . . . . 5  |-  ( ph  ->  ( 2nd `  F
)  Fn  ( (
Base `  C )  X.  ( Base `  C
) ) )
39 fnov 6117 . . . . 5  |-  ( ( 2nd `  F )  Fn  ( ( Base `  C )  X.  ( Base `  C ) )  <-> 
( 2nd `  F
)  =  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( x ( 2nd `  F ) y ) ) )
4038, 39sylib 189 . . . 4  |-  ( ph  ->  ( 2nd `  F
)  =  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( x ( 2nd `  F ) y ) ) )
41 eqid 2387 . . . . . . . . 9  |-  (  Hom  `  C )  =  (  Hom  `  C )
429adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  ( 1st `  F ) ( C  Func  T )
( 2nd `  F
) )
43 simprl 733 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  x  e.  ( Base `  C
) )
44 simprr 734 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  y  e.  ( Base `  C
) )
451, 41, 23, 42, 43, 44funcf2 13992 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
x ( 2nd `  F
) y ) : ( x (  Hom  `  C ) y ) --> ( ( ( 1st `  F ) `  x
) (  Hom  `  T
) ( ( 1st `  F ) `  y
) ) )
4645feqmptd 5718 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
x ( 2nd `  F
) y )  =  ( f  e.  ( x (  Hom  `  C
) y )  |->  ( ( x ( 2nd `  F ) y ) `
 f ) ) )
472, 23relxpchom 14205 . . . . . . . . . 10  |-  Rel  (
( ( 1st `  F
) `  x )
(  Hom  `  T ) ( ( 1st `  F
) `  y )
)
4845ffvelrnda 5809 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
(  Hom  `  C ) y ) )  -> 
( ( x ( 2nd `  F ) y ) `  f
)  e.  ( ( ( 1st `  F
) `  x )
(  Hom  `  T ) ( ( 1st `  F
) `  y )
) )
49 1st2nd 6332 . . . . . . . . . 10  |-  ( ( Rel  ( ( ( 1st `  F ) `
 x ) (  Hom  `  T )
( ( 1st `  F
) `  y )
)  /\  ( (
x ( 2nd `  F
) y ) `  f )  e.  ( ( ( 1st `  F
) `  x )
(  Hom  `  T ) ( ( 1st `  F
) `  y )
) )  ->  (
( x ( 2nd `  F ) y ) `
 f )  = 
<. ( 1st `  (
( x ( 2nd `  F ) y ) `
 f ) ) ,  ( 2nd `  (
( x ( 2nd `  F ) y ) `
 f ) )
>. )
5047, 48, 49sylancr 645 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
(  Hom  `  C ) y ) )  -> 
( ( x ( 2nd `  F ) y ) `  f
)  =  <. ( 1st `  ( ( x ( 2nd `  F
) y ) `  f ) ) ,  ( 2nd `  (
( x ( 2nd `  F ) y ) `
 f ) )
>. )
517ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
(  Hom  `  C ) y ) )  ->  F  e.  ( C  Func  T ) )
5219ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
(  Hom  `  C ) y ) )  -> 
( D  1stF  E )  e.  ( T  Func  D
) )
5343adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
(  Hom  `  C ) y ) )  ->  x  e.  ( Base `  C ) )
5444adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
(  Hom  `  C ) y ) )  -> 
y  e.  ( Base `  C ) )
55 simpr 448 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
(  Hom  `  C ) y ) )  -> 
f  e.  ( x (  Hom  `  C
) y ) )
561, 51, 52, 53, 54, 41, 55cofu2 14010 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
(  Hom  `  C ) y ) )  -> 
( ( x ( 2nd `  ( ( D  1stF  E )  o.func  F )
) y ) `  f )  =  ( ( ( ( 1st `  F ) `  x
) ( 2nd `  ( D  1stF  E ) ) ( ( 1st `  F
) `  y )
) `  ( (
x ( 2nd `  F
) y ) `  f ) ) )
5716adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  D  e.  Cat )
5817adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  E  e.  Cat )
5912adantrr 698 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( 1st `  F
) `  x )  e.  ( ( Base `  D
)  X.  ( Base `  E ) ) )
6010ffvelrnda 5809 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  y  e.  ( Base `  C )
)  ->  ( ( 1st `  F ) `  y )  e.  ( ( Base `  D
)  X.  ( Base `  E ) ) )
6160adantrl 697 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( 1st `  F
) `  y )  e.  ( ( Base `  D
)  X.  ( Base `  E ) ) )
622, 5, 23, 57, 58, 18, 59, 611stf2 14217 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( ( 1st `  F
) `  x )
( 2nd `  ( D  1stF  E ) ) ( ( 1st `  F
) `  y )
)  =  ( 1st  |`  ( ( ( 1st `  F ) `  x
) (  Hom  `  T
) ( ( 1st `  F ) `  y
) ) ) )
6362adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
(  Hom  `  C ) y ) )  -> 
( ( ( 1st `  F ) `  x
) ( 2nd `  ( D  1stF  E ) ) ( ( 1st `  F
) `  y )
)  =  ( 1st  |`  ( ( ( 1st `  F ) `  x
) (  Hom  `  T
) ( ( 1st `  F ) `  y
) ) ) )
6463fveq1d 5670 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
(  Hom  `  C ) y ) )  -> 
( ( ( ( 1st `  F ) `
 x ) ( 2nd `  ( D  1stF  E ) ) ( ( 1st `  F
) `  y )
) `  ( (
x ( 2nd `  F
) y ) `  f ) )  =  ( ( 1st  |`  (
( ( 1st `  F
) `  x )
(  Hom  `  T ) ( ( 1st `  F
) `  y )
) ) `  (
( x ( 2nd `  F ) y ) `
 f ) ) )
65 fvres 5685 . . . . . . . . . . . 12  |-  ( ( ( x ( 2nd `  F ) y ) `
 f )  e.  ( ( ( 1st `  F ) `  x
) (  Hom  `  T
) ( ( 1st `  F ) `  y
) )  ->  (
( 1st  |`  ( ( ( 1st `  F
) `  x )
(  Hom  `  T ) ( ( 1st `  F
) `  y )
) ) `  (
( x ( 2nd `  F ) y ) `
 f ) )  =  ( 1st `  (
( x ( 2nd `  F ) y ) `
 f ) ) )
6648, 65syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
(  Hom  `  C ) y ) )  -> 
( ( 1st  |`  (
( ( 1st `  F
) `  x )
(  Hom  `  T ) ( ( 1st `  F
) `  y )
) ) `  (
( x ( 2nd `  F ) y ) `
 f ) )  =  ( 1st `  (
( x ( 2nd `  F ) y ) `
 f ) ) )
6756, 64, 663eqtrd 2423 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
(  Hom  `  C ) y ) )  -> 
( ( x ( 2nd `  ( ( D  1stF  E )  o.func  F )
) y ) `  f )  =  ( 1st `  ( ( x ( 2nd `  F
) y ) `  f ) ) )
6829ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
(  Hom  `  C ) y ) )  -> 
( D  2ndF  E )  e.  ( T  Func  E
) )
691, 51, 68, 53, 54, 41, 55cofu2 14010 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
(  Hom  `  C ) y ) )  -> 
( ( x ( 2nd `  ( ( D  2ndF  E )  o.func  F )
) y ) `  f )  =  ( ( ( ( 1st `  F ) `  x
) ( 2nd `  ( D  2ndF  E ) ) ( ( 1st `  F
) `  y )
) `  ( (
x ( 2nd `  F
) y ) `  f ) ) )
702, 5, 23, 57, 58, 28, 59, 612ndf2 14220 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
( ( 1st `  F
) `  x )
( 2nd `  ( D  2ndF  E ) ) ( ( 1st `  F
) `  y )
)  =  ( 2nd  |`  ( ( ( 1st `  F ) `  x
) (  Hom  `  T
) ( ( 1st `  F ) `  y
) ) ) )
7170adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
(  Hom  `  C ) y ) )  -> 
( ( ( 1st `  F ) `  x
) ( 2nd `  ( D  2ndF  E ) ) ( ( 1st `  F
) `  y )
)  =  ( 2nd  |`  ( ( ( 1st `  F ) `  x
) (  Hom  `  T
) ( ( 1st `  F ) `  y
) ) ) )
7271fveq1d 5670 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
(  Hom  `  C ) y ) )  -> 
( ( ( ( 1st `  F ) `
 x ) ( 2nd `  ( D  2ndF  E ) ) ( ( 1st `  F
) `  y )
) `  ( (
x ( 2nd `  F
) y ) `  f ) )  =  ( ( 2nd  |`  (
( ( 1st `  F
) `  x )
(  Hom  `  T ) ( ( 1st `  F
) `  y )
) ) `  (
( x ( 2nd `  F ) y ) `
 f ) ) )
73 fvres 5685 . . . . . . . . . . . 12  |-  ( ( ( x ( 2nd `  F ) y ) `
 f )  e.  ( ( ( 1st `  F ) `  x
) (  Hom  `  T
) ( ( 1st `  F ) `  y
) )  ->  (
( 2nd  |`  ( ( ( 1st `  F
) `  x )
(  Hom  `  T ) ( ( 1st `  F
) `  y )
) ) `  (
( x ( 2nd `  F ) y ) `
 f ) )  =  ( 2nd `  (
( x ( 2nd `  F ) y ) `
 f ) ) )
7448, 73syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
(  Hom  `  C ) y ) )  -> 
( ( 2nd  |`  (
( ( 1st `  F
) `  x )
(  Hom  `  T ) ( ( 1st `  F
) `  y )
) ) `  (
( x ( 2nd `  F ) y ) `
 f ) )  =  ( 2nd `  (
( x ( 2nd `  F ) y ) `
 f ) ) )
7569, 72, 743eqtrd 2423 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
(  Hom  `  C ) y ) )  -> 
( ( x ( 2nd `  ( ( D  2ndF  E )  o.func  F )
) y ) `  f )  =  ( 2nd `  ( ( x ( 2nd `  F
) y ) `  f ) ) )
7667, 75opeq12d 3934 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
(  Hom  `  C ) y ) )  ->  <. ( ( x ( 2nd `  ( ( D  1stF  E )  o.func  F )
) y ) `  f ) ,  ( ( x ( 2nd `  ( ( D  2ndF  E )  o.func 
F ) ) y ) `  f )
>.  =  <. ( 1st `  ( ( x ( 2nd `  F ) y ) `  f
) ) ,  ( 2nd `  ( ( x ( 2nd `  F
) y ) `  f ) ) >.
)
7750, 76eqtr4d 2422 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  C
) ) )  /\  f  e.  ( x
(  Hom  `  C ) y ) )  -> 
( ( x ( 2nd `  F ) y ) `  f
)  =  <. (
( x ( 2nd `  ( ( D  1stF  E )  o.func 
F ) ) y ) `  f ) ,  ( ( x ( 2nd `  (
( D  2ndF  E )  o.func  F ) ) y ) `
 f ) >.
)
7877mpteq2dva 4236 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
f  e.  ( x (  Hom  `  C
) y )  |->  ( ( x ( 2nd `  F ) y ) `
 f ) )  =  ( f  e.  ( x (  Hom  `  C ) y ) 
|->  <. ( ( x ( 2nd `  (
( D  1stF  E )  o.func  F ) ) y ) `
 f ) ,  ( ( x ( 2nd `  ( ( D  2ndF  E )  o.func  F )
) y ) `  f ) >. )
)
7946, 78eqtrd 2419 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )
) )  ->  (
x ( 2nd `  F
) y )  =  ( f  e.  ( x (  Hom  `  C
) y )  |->  <.
( ( x ( 2nd `  ( ( D  1stF  E )  o.func  F )
) y ) `  f ) ,  ( ( x ( 2nd `  ( ( D  2ndF  E )  o.func 
F ) ) y ) `  f )
>. ) )
80793impb 1149 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )  /\  y  e.  ( Base `  C ) )  ->  ( x ( 2nd `  F ) y )  =  ( f  e.  ( x (  Hom  `  C
) y )  |->  <.
( ( x ( 2nd `  ( ( D  1stF  E )  o.func  F )
) y ) `  f ) ,  ( ( x ( 2nd `  ( ( D  2ndF  E )  o.func 
F ) ) y ) `  f )
>. ) )
8180mpt2eq3dva 6077 . . . 4  |-  ( ph  ->  ( x  e.  (
Base `  C ) ,  y  e.  ( Base `  C )  |->  ( x ( 2nd `  F
) y ) )  =  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( f  e.  ( x (  Hom  `  C ) y ) 
|->  <. ( ( x ( 2nd `  (
( D  1stF  E )  o.func  F ) ) y ) `
 f ) ,  ( ( x ( 2nd `  ( ( D  2ndF  E )  o.func  F )
) y ) `  f ) >. )
) )
8240, 81eqtrd 2419 . . 3  |-  ( ph  ->  ( 2nd `  F
)  =  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( f  e.  ( x (  Hom  `  C ) y ) 
|->  <. ( ( x ( 2nd `  (
( D  1stF  E )  o.func  F ) ) y ) `
 f ) ,  ( ( x ( 2nd `  ( ( D  2ndF  E )  o.func  F )
) y ) `  f ) >. )
) )
8337, 82opeq12d 3934 . 2  |-  ( ph  -> 
<. ( 1st `  F
) ,  ( 2nd `  F ) >.  =  <. ( x  e.  ( Base `  C )  |->  <. (
( 1st `  (
( D  1stF  E )  o.func  F ) ) `  x
) ,  ( ( 1st `  ( ( D  2ndF  E )  o.func  F )
) `  x ) >. ) ,  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( f  e.  ( x (  Hom  `  C ) y ) 
|->  <. ( ( x ( 2nd `  (
( D  1stF  E )  o.func  F ) ) y ) `
 f ) ,  ( ( x ( 2nd `  ( ( D  2ndF  E )  o.func  F )
) y ) `  f ) >. )
) >. )
84 1st2nd 6332 . . 3  |-  ( ( Rel  ( C  Func  T )  /\  F  e.  ( C  Func  T
) )  ->  F  =  <. ( 1st `  F
) ,  ( 2nd `  F ) >. )
856, 7, 84sylancr 645 . 2  |-  ( ph  ->  F  =  <. ( 1st `  F ) ,  ( 2nd `  F
) >. )
86 eqid 2387 . . 3  |-  ( ( ( D  1stF  E )  o.func  F ) ⟨,⟩F  ( ( D  2ndF  E )  o.func 
F ) )  =  ( ( ( D  1stF  E )  o.func  F ) ⟨,⟩F  ( ( D  2ndF  E )  o.func  F )
)
877, 19cofucl 14012 . . 3  |-  ( ph  ->  ( ( D  1stF  E )  o.func 
F )  e.  ( C  Func  D )
)
887, 29cofucl 14012 . . 3  |-  ( ph  ->  ( ( D  2ndF  E )  o.func 
F )  e.  ( C  Func  E )
)
8986, 1, 41, 87, 88prfval 14223 . 2  |-  ( ph  ->  ( ( ( D  1stF  E )  o.func  F ) ⟨,⟩F  ( ( D  2ndF  E )  o.func  F )
)  =  <. (
x  e.  ( Base `  C )  |->  <. (
( 1st `  (
( D  1stF  E )  o.func  F ) ) `  x
) ,  ( ( 1st `  ( ( D  2ndF  E )  o.func  F )
) `  x ) >. ) ,  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( f  e.  ( x (  Hom  `  C ) y ) 
|->  <. ( ( x ( 2nd `  (
( D  1stF  E )  o.func  F ) ) y ) `
 f ) ,  ( ( x ( 2nd `  ( ( D  2ndF  E )  o.func  F )
) y ) `  f ) >. )
) >. )
9083, 85, 893eqtr4d 2429 1  |-  ( ph  ->  F  =  ( ( ( D  1stF  E )  o.func  F ) ⟨,⟩F  ( ( D  2ndF  E )  o.func 
F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   <.cop 3760   class class class wbr 4153    e. cmpt 4207    X. cxp 4816    |` cres 4820   Rel wrel 4823    Fn wfn 5389   ` cfv 5394  (class class class)co 6020    e. cmpt2 6022   1stc1st 6286   2ndc2nd 6287   Basecbs 13396    Hom chom 13467   Catccat 13816    Func cfunc 13978    o.func ccofu 13980    X.c cxpc 14192    1stF c1stf 14193    2ndF c2ndf 14194   ⟨,⟩F cprf 14195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-map 6956  df-ixp 7000  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-fz 10976  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-hom 13480  df-cco 13481  df-cat 13820  df-cid 13821  df-func 13982  df-cofu 13984  df-xpc 14196  df-1stf 14197  df-2ndf 14198  df-prf 14199
  Copyright terms: Public domain W3C validator