MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1st2val Unicode version

Theorem 1st2val 6187
Description: Value of an alternate definition of the  1st function. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 30-Dec-2014.)
Assertion
Ref Expression
1st2val  |-  ( {
<. <. x ,  y
>. ,  z >.  |  z  =  x } `  A )  =  ( 1st `  A )
Distinct variable group:    x, y, z
Allowed substitution hints:    A( x, y, z)

Proof of Theorem 1st2val
Dummy variables  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elvv 4785 . . 3  |-  ( A  e.  ( _V  X.  _V )  <->  E. w E. v  A  =  <. w ,  v >. )
2 fveq2 5563 . . . . . 6  |-  ( A  =  <. w ,  v
>.  ->  ( { <. <.
x ,  y >. ,  z >.  |  z  =  x } `  A )  =  ( { <. <. x ,  y
>. ,  z >.  |  z  =  x } `  <. w ,  v
>. ) )
3 df-ov 5903 . . . . . . 7  |-  ( w { <. <. x ,  y
>. ,  z >.  |  z  =  x }
v )  =  ( { <. <. x ,  y
>. ,  z >.  |  z  =  x } `  <. w ,  v
>. )
4 vex 2825 . . . . . . . 8  |-  w  e. 
_V
5 vex 2825 . . . . . . . 8  |-  v  e. 
_V
6 simpl 443 . . . . . . . . 9  |-  ( ( x  =  w  /\  y  =  v )  ->  x  =  w )
7 mpt2v 5979 . . . . . . . . . 10  |-  ( x  e.  _V ,  y  e.  _V  |->  x )  =  { <. <. x ,  y >. ,  z
>.  |  z  =  x }
87eqcomi 2320 . . . . . . . . 9  |-  { <. <.
x ,  y >. ,  z >.  |  z  =  x }  =  ( x  e.  _V ,  y  e.  _V  |->  x )
96, 8, 4ovmpt2a 6020 . . . . . . . 8  |-  ( ( w  e.  _V  /\  v  e.  _V )  ->  ( w { <. <.
x ,  y >. ,  z >.  |  z  =  x } v )  =  w )
104, 5, 9mp2an 653 . . . . . . 7  |-  ( w { <. <. x ,  y
>. ,  z >.  |  z  =  x }
v )  =  w
113, 10eqtr3i 2338 . . . . . 6  |-  ( {
<. <. x ,  y
>. ,  z >.  |  z  =  x } `  <. w ,  v
>. )  =  w
122, 11syl6eq 2364 . . . . 5  |-  ( A  =  <. w ,  v
>.  ->  ( { <. <.
x ,  y >. ,  z >.  |  z  =  x } `  A )  =  w )
134, 5op1std 6172 . . . . 5  |-  ( A  =  <. w ,  v
>.  ->  ( 1st `  A
)  =  w )
1412, 13eqtr4d 2351 . . . 4  |-  ( A  =  <. w ,  v
>.  ->  ( { <. <.
x ,  y >. ,  z >.  |  z  =  x } `  A )  =  ( 1st `  A ) )
1514exlimivv 1626 . . 3  |-  ( E. w E. v  A  =  <. w ,  v
>.  ->  ( { <. <.
x ,  y >. ,  z >.  |  z  =  x } `  A )  =  ( 1st `  A ) )
161, 15sylbi 187 . 2  |-  ( A  e.  ( _V  X.  _V )  ->  ( {
<. <. x ,  y
>. ,  z >.  |  z  =  x } `  A )  =  ( 1st `  A ) )
17 vex 2825 . . . . . . . . . 10  |-  x  e. 
_V
18 vex 2825 . . . . . . . . . 10  |-  y  e. 
_V
1917, 18pm3.2i 441 . . . . . . . . 9  |-  ( x  e.  _V  /\  y  e.  _V )
20 a9ev 1647 . . . . . . . . 9  |-  E. z 
z  =  x
2119, 202th 230 . . . . . . . 8  |-  ( ( x  e.  _V  /\  y  e.  _V )  <->  E. z  z  =  x )
2221opabbii 4120 . . . . . . 7  |-  { <. x ,  y >.  |  ( x  e.  _V  /\  y  e.  _V ) }  =  { <. x ,  y >.  |  E. z  z  =  x }
23 df-xp 4732 . . . . . . 7  |-  ( _V 
X.  _V )  =  { <. x ,  y >.  |  ( x  e. 
_V  /\  y  e.  _V ) }
24 dmoprab 5970 . . . . . . 7  |-  dom  { <. <. x ,  y
>. ,  z >.  |  z  =  x }  =  { <. x ,  y
>.  |  E. z 
z  =  x }
2522, 23, 243eqtr4ri 2347 . . . . . 6  |-  dom  { <. <. x ,  y
>. ,  z >.  |  z  =  x }  =  ( _V  X.  _V )
2625eleq2i 2380 . . . . 5  |-  ( A  e.  dom  { <. <.
x ,  y >. ,  z >.  |  z  =  x }  <->  A  e.  ( _V  X.  _V )
)
27 ndmfv 5590 . . . . 5  |-  ( -.  A  e.  dom  { <. <. x ,  y
>. ,  z >.  |  z  =  x }  ->  ( { <. <. x ,  y >. ,  z
>.  |  z  =  x } `  A )  =  (/) )
2826, 27sylnbir 298 . . . 4  |-  ( -.  A  e.  ( _V 
X.  _V )  ->  ( { <. <. x ,  y
>. ,  z >.  |  z  =  x } `  A )  =  (/) )
29 dmsnn0 5175 . . . . . . . 8  |-  ( A  e.  ( _V  X.  _V )  <->  dom  { A }  =/=  (/) )
3029biimpri 197 . . . . . . 7  |-  ( dom 
{ A }  =/=  (/) 
->  A  e.  ( _V  X.  _V ) )
3130necon1bi 2522 . . . . . 6  |-  ( -.  A  e.  ( _V 
X.  _V )  ->  dom  { A }  =  (/) )
3231unieqd 3875 . . . . 5  |-  ( -.  A  e.  ( _V 
X.  _V )  ->  U. dom  { A }  =  U. (/) )
33 uni0 3891 . . . . 5  |-  U. (/)  =  (/)
3432, 33syl6eq 2364 . . . 4  |-  ( -.  A  e.  ( _V 
X.  _V )  ->  U. dom  { A }  =  (/) )
3528, 34eqtr4d 2351 . . 3  |-  ( -.  A  e.  ( _V 
X.  _V )  ->  ( { <. <. x ,  y
>. ,  z >.  |  z  =  x } `  A )  =  U. dom  { A } )
36 1stval 6166 . . 3  |-  ( 1st `  A )  =  U. dom  { A }
3735, 36syl6eqr 2366 . 2  |-  ( -.  A  e.  ( _V 
X.  _V )  ->  ( { <. <. x ,  y
>. ,  z >.  |  z  =  x } `  A )  =  ( 1st `  A ) )
3816, 37pm2.61i 156 1  |-  ( {
<. <. x ,  y
>. ,  z >.  |  z  =  x } `  A )  =  ( 1st `  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 358   E.wex 1532    = wceq 1633    e. wcel 1701    =/= wne 2479   _Vcvv 2822   (/)c0 3489   {csn 3674   <.cop 3677   U.cuni 3864   {copab 4113    X. cxp 4724   dom cdm 4726   ` cfv 5292  (class class class)co 5900   {coprab 5901    e. cmpt2 5902   1stc1st 6162
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-rab 2586  df-v 2824  df-sbc 3026  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-iota 5256  df-fun 5294  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164
  Copyright terms: Public domain W3C validator