MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stccnp Unicode version

Theorem 1stccnp 17405
Description: A mapping is continuous at  P in a first-countable space  X iff it is sequentially continuous at  P, meaning that the image under  F of every sequence converging at  P converges to  F ( P ). This proof uses ax-cc 8208, but only via 1stcelcls 17404, so it could be refactored into a proof that continuity and sequential continuity are the same in sequential spaces. (Contributed by Mario Carneiro, 7-Sep-2015.)
Hypotheses
Ref Expression
1stccnp.1  |-  ( ph  ->  J  e.  1stc )
1stccnp.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
1stccnp.3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
1stccnp.4  |-  ( ph  ->  P  e.  X )
Assertion
Ref Expression
1stccnp  |-  ( ph  ->  ( F  e.  ( ( J  CnP  K
) `  P )  <->  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) ) )
Distinct variable groups:    f, F    f, J    ph, f    f, K   
f, X    f, Y    P, f

Proof of Theorem 1stccnp
Dummy variables  j 
k  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stccnp.2 . . . . 5  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 1stccnp.3 . . . . 5  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
31, 2jca 518 . . . 4  |-  ( ph  ->  ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
) )
4 cnpf2 17197 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  F  e.  (
( J  CnP  K
) `  P )
)  ->  F : X
--> Y )
543expa 1152 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  F : X
--> Y )
63, 5sylan 457 . . 3  |-  ( (
ph  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  F : X
--> Y )
7 simprr 733 . . . . . 6  |-  ( ( ( ph  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  ( f : NN --> X  /\  f ( ~~> t `  J ) P ) )  ->  f ( ~~> t `  J ) P )
8 simplr 731 . . . . . 6  |-  ( ( ( ph  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  ( f : NN --> X  /\  f ( ~~> t `  J ) P ) )  ->  F  e.  ( ( J  CnP  K ) `  P ) )
97, 8lmcnp 17249 . . . . 5  |-  ( ( ( ph  /\  F  e.  ( ( J  CnP  K ) `  P ) )  /\  ( f : NN --> X  /\  f ( ~~> t `  J ) P ) )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) )
109ex 423 . . . 4  |-  ( (
ph  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  ( (
f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )
1110alrimiv 1636 . . 3  |-  ( (
ph  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  A. f
( ( f : NN --> X  /\  f
( ~~> t `  J
) P )  -> 
( F  o.  f
) ( ~~> t `  K ) ( F `
 P ) ) )
126, 11jca 518 . 2  |-  ( (
ph  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )
13 simprl 732 . . 3  |-  ( (
ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  ->  F : X --> Y )
14 fal 1327 . . . . . . . . 9  |-  -.  F.
15 19.29 1601 . . . . . . . . . . . . . 14  |-  ( ( A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) )  /\  E. f ( f : NN --> ( X 
\  ( `' F " u ) )  /\  f ( ~~> t `  J ) P ) )  ->  E. f
( ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) )  /\  ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P ) ) )
16 simprl 732 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( f : NN --> ( X  \  ( `' F " u ) )  /\  f ( ~~> t `  J ) P ) )  -> 
f : NN --> ( X 
\  ( `' F " u ) ) )
17 difss 3390 . . . . . . . . . . . . . . . . . . . . 21  |-  ( X 
\  ( `' F " u ) )  C_  X
18 fss 5503 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( f : NN --> ( X 
\  ( `' F " u ) )  /\  ( X  \  ( `' F " u ) )  C_  X )  ->  f : NN --> X )
1916, 17, 18sylancl 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( f : NN --> ( X  \  ( `' F " u ) )  /\  f ( ~~> t `  J ) P ) )  -> 
f : NN --> X )
20 simprr 733 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( f : NN --> ( X  \  ( `' F " u ) )  /\  f ( ~~> t `  J ) P ) )  -> 
f ( ~~> t `  J ) P )
2119, 20jca 518 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( f : NN --> ( X  \  ( `' F " u ) )  /\  f ( ~~> t `  J ) P ) )  -> 
( f : NN --> X  /\  f ( ~~> t `  J ) P ) )
22 nnuz 10414 . . . . . . . . . . . . . . . . . . . . . 22  |-  NN  =  ( ZZ>= `  1 )
23 simplrr 737 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  ->  ( F `  P )  e.  u
)
24 1z 10204 . . . . . . . . . . . . . . . . . . . . . . 23  |-  1  e.  ZZ
2524a1i 10 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  ->  1  e.  ZZ )
26 simprr 733 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) )
27 simplrl 736 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  ->  u  e.  K )
2822, 23, 25, 26, 27lmcvg 17209 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F  o.  f ) `  k
)  e.  u )
2922r19.2uz 12042 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F  o.  f ) `
 k )  e.  u  ->  E. k  e.  NN  ( ( F  o.  f ) `  k )  e.  u
)
30 simprll 738 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  ->  f : NN
--> ( X  \  ( `' F " u ) ) )
31 ffn 5495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( f : NN --> ( X 
\  ( `' F " u ) )  -> 
f  Fn  NN )
3230, 31syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  ->  f  Fn  NN )
33 fvco2 5701 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( f  Fn  NN  /\  k  e.  NN )  ->  ( ( F  o.  f ) `  k
)  =  ( F `
 ( f `  k ) ) )
3432, 33sylan 457 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  /\  k  e.  NN )  ->  (
( F  o.  f
) `  k )  =  ( F `  ( f `  k
) ) )
3534eleq1d 2432 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  /\  k  e.  NN )  ->  (
( ( F  o.  f ) `  k
)  e.  u  <->  ( F `  ( f `  k
) )  e.  u
) )
36 ffvelrn 5770 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( f : NN --> ( X 
\  ( `' F " u ) )  /\  k  e.  NN )  ->  ( f `  k
)  e.  ( X 
\  ( `' F " u ) ) )
3730, 36sylan 457 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  /\  k  e.  NN )  ->  (
f `  k )  e.  ( X  \  ( `' F " u ) ) )
38 eldifi 3385 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( f `  k )  e.  ( X  \ 
( `' F "
u ) )  -> 
( f `  k
)  e.  X )
3937, 38syl 15 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  /\  k  e.  NN )  ->  (
f `  k )  e.  X )
40 simplr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `  P
)  e.  u ) )  ->  F : X
--> Y )
4140ad2antrr 706 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  /\  k  e.  NN )  ->  F : X --> Y )
42 ffn 5495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( F : X --> Y  ->  F  Fn  X )
43 elpreima 5752 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( F  Fn  X  ->  (
( f `  k
)  e.  ( `' F " u )  <-> 
( ( f `  k )  e.  X  /\  ( F `  (
f `  k )
)  e.  u ) ) )
4441, 42, 433syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  /\  k  e.  NN )  ->  (
( f `  k
)  e.  ( `' F " u )  <-> 
( ( f `  k )  e.  X  /\  ( F `  (
f `  k )
)  e.  u ) ) )
45 eldifn 3386 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( f `  k )  e.  ( X  \ 
( `' F "
u ) )  ->  -.  ( f `  k
)  e.  ( `' F " u ) )
4637, 45syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  /\  k  e.  NN )  ->  -.  ( f `  k
)  e.  ( `' F " u ) )
4746pm2.21d 98 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  /\  k  e.  NN )  ->  (
( f `  k
)  e.  ( `' F " u )  ->  F.  ) )
4844, 47sylbird 226 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  /\  k  e.  NN )  ->  (
( ( f `  k )  e.  X  /\  ( F `  (
f `  k )
)  e.  u )  ->  F.  ) )
4939, 48mpand 656 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  /\  k  e.  NN )  ->  (
( F `  (
f `  k )
)  e.  u  ->  F.  ) )
5035, 49sylbid 206 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  /\  k  e.  NN )  ->  (
( ( F  o.  f ) `  k
)  e.  u  ->  F.  ) )
5150rexlimdva 2752 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  ->  ( E. k  e.  NN  (
( F  o.  f
) `  k )  e.  u  ->  F.  )
)
5229, 51syl5 28 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F  o.  f ) `  k
)  e.  u  ->  F.  ) )
5328, 52mpd 14 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  /\  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) )  ->  F.  )
5453expr 598 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( f : NN --> ( X  \  ( `' F " u ) )  /\  f ( ~~> t `  J ) P ) )  -> 
( ( F  o.  f ) ( ~~> t `  K ) ( F `
 P )  ->  F.  ) )
5521, 54embantd 50 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `
 P )  e.  u ) )  /\  ( f : NN --> ( X  \  ( `' F " u ) )  /\  f ( ~~> t `  J ) P ) )  -> 
( ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) )  ->  F.  ) )
5655ex 423 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `  P
)  e.  u ) )  ->  ( (
f : NN --> ( X 
\  ( `' F " u ) )  /\  f ( ~~> t `  J ) P )  ->  ( ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) )  ->  F.  ) )
)
5756com23 72 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `  P
)  e.  u ) )  ->  ( (
( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) )  ->  ( ( f : NN --> ( X 
\  ( `' F " u ) )  /\  f ( ~~> t `  J ) P )  ->  F.  ) )
)
5857imp3a 420 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `  P
)  e.  u ) )  ->  ( (
( ( f : NN --> X  /\  f
( ~~> t `  J
) P )  -> 
( F  o.  f
) ( ~~> t `  K ) ( F `
 P ) )  /\  ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P ) )  ->  F.  )
)
5958exlimdv 1641 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `  P
)  e.  u ) )  ->  ( E. f ( ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) )  /\  ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P ) )  ->  F.  )
)
6015, 59syl5 28 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( u  e.  K  /\  ( F `  P
)  e.  u ) )  ->  ( ( A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) )  /\  E. f ( f : NN --> ( X 
\  ( `' F " u ) )  /\  f ( ~~> t `  J ) P ) )  ->  F.  )
)
6160exp4b 590 . . . . . . . . . . . 12  |-  ( (
ph  /\  F : X
--> Y )  ->  (
( u  e.  K  /\  ( F `  P
)  e.  u )  ->  ( A. f
( ( f : NN --> X  /\  f
( ~~> t `  J
) P )  -> 
( F  o.  f
) ( ~~> t `  K ) ( F `
 P ) )  ->  ( E. f
( f : NN --> ( X  \  ( `' F " u ) )  /\  f ( ~~> t `  J ) P )  ->  F.  ) ) ) )
6261com23 72 . . . . . . . . . . 11  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) )  ->  ( ( u  e.  K  /\  ( F `  P )  e.  u )  ->  ( E. f ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P )  ->  F.  ) )
) )
6362impr 602 . . . . . . . . . 10  |-  ( (
ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  ->  (
( u  e.  K  /\  ( F `  P
)  e.  u )  ->  ( E. f
( f : NN --> ( X  \  ( `' F " u ) )  /\  f ( ~~> t `  J ) P )  ->  F.  ) ) )
6463imp 418 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  ( E. f
( f : NN --> ( X  \  ( `' F " u ) )  /\  f ( ~~> t `  J ) P )  ->  F.  ) )
6514, 64mtoi 169 . . . . . . . 8  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  -.  E. f
( f : NN --> ( X  \  ( `' F " u ) )  /\  f ( ~~> t `  J ) P ) )
66 1stccnp.1 . . . . . . . . . 10  |-  ( ph  ->  J  e.  1stc )
6766ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  J  e.  1stc )
681ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  J  e.  (TopOn `  X ) )
69 toponuni 16882 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
7068, 69syl 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  X  =  U. J )
7117, 70syl5sseq 3312 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  ( X  \ 
( `' F "
u ) )  C_  U. J )
72 eqid 2366 . . . . . . . . . 10  |-  U. J  =  U. J
73721stcelcls 17404 . . . . . . . . 9  |-  ( ( J  e.  1stc  /\  ( X  \  ( `' F " u ) )  C_  U. J )  ->  ( P  e.  ( ( cls `  J ) `  ( X  \  ( `' F " u ) ) )  <->  E. f
( f : NN --> ( X  \  ( `' F " u ) )  /\  f ( ~~> t `  J ) P ) ) )
7467, 71, 73syl2anc 642 . . . . . . . 8  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  ( P  e.  ( ( cls `  J
) `  ( X  \  ( `' F "
u ) ) )  <->  E. f ( f : NN --> ( X  \ 
( `' F "
u ) )  /\  f ( ~~> t `  J ) P ) ) )
7565, 74mtbird 292 . . . . . . 7  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  -.  P  e.  ( ( cls `  J
) `  ( X  \  ( `' F "
u ) ) ) )
76 topontop 16881 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
7768, 76syl 15 . . . . . . . 8  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  J  e.  Top )
78 1stccnp.4 . . . . . . . . . 10  |-  ( ph  ->  P  e.  X )
7978ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  P  e.  X
)
8079, 70eleqtrd 2442 . . . . . . . 8  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  P  e.  U. J )
8172elcls 17027 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( X  \  ( `' F " u ) )  C_  U. J  /\  P  e.  U. J )  ->  ( P  e.  ( ( cls `  J
) `  ( X  \  ( `' F "
u ) ) )  <->  A. v  e.  J  ( P  e.  v  ->  ( v  i^i  ( X  \  ( `' F " u ) ) )  =/=  (/) ) ) )
8277, 71, 80, 81syl3anc 1183 . . . . . . 7  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  ( P  e.  ( ( cls `  J
) `  ( X  \  ( `' F "
u ) ) )  <->  A. v  e.  J  ( P  e.  v  ->  ( v  i^i  ( X  \  ( `' F " u ) ) )  =/=  (/) ) ) )
8375, 82mtbid 291 . . . . . 6  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  -.  A. v  e.  J  ( P  e.  v  ->  ( v  i^i  ( X  \ 
( `' F "
u ) ) )  =/=  (/) ) )
8413ad2antrr 706 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  /\  v  e.  J
)  ->  F : X
--> Y )
85 ffun 5497 . . . . . . . . . . . . 13  |-  ( F : X --> Y  ->  Fun  F )
8684, 85syl 15 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  /\  v  e.  J
)  ->  Fun  F )
87 toponss 16884 . . . . . . . . . . . . . 14  |-  ( ( J  e.  (TopOn `  X )  /\  v  e.  J )  ->  v  C_  X )
8868, 87sylan 457 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  /\  v  e.  J
)  ->  v  C_  X )
89 fdm 5499 . . . . . . . . . . . . . 14  |-  ( F : X --> Y  ->  dom  F  =  X )
9084, 89syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  /\  v  e.  J
)  ->  dom  F  =  X )
9188, 90sseqtr4d 3301 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  /\  v  e.  J
)  ->  v  C_  dom  F )
92 funimass3 5748 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  v  C_ 
dom  F )  -> 
( ( F "
v )  C_  u  <->  v 
C_  ( `' F " u ) ) )
9386, 91, 92syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  /\  v  e.  J
)  ->  ( ( F " v )  C_  u 
<->  v  C_  ( `' F " u ) ) )
94 df-ss 3252 . . . . . . . . . . . . 13  |-  ( v 
C_  X  <->  ( v  i^i  X )  =  v )
9588, 94sylib 188 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  /\  v  e.  J
)  ->  ( v  i^i  X )  =  v )
9695sseq1d 3291 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  /\  v  e.  J
)  ->  ( (
v  i^i  X )  C_  ( `' F "
u )  <->  v  C_  ( `' F " u ) ) )
9793, 96bitr4d 247 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  /\  v  e.  J
)  ->  ( ( F " v )  C_  u 
<->  ( v  i^i  X
)  C_  ( `' F " u ) ) )
98 nne 2533 . . . . . . . . . . 11  |-  ( -.  ( v  i^i  ( X  \  ( `' F " u ) ) )  =/=  (/)  <->  ( v  i^i  ( X  \  ( `' F " u ) ) )  =  (/) )
99 inssdif0 3610 . . . . . . . . . . 11  |-  ( ( v  i^i  X ) 
C_  ( `' F " u )  <->  ( v  i^i  ( X  \  ( `' F " u ) ) )  =  (/) )
10098, 99bitr4i 243 . . . . . . . . . 10  |-  ( -.  ( v  i^i  ( X  \  ( `' F " u ) ) )  =/=  (/)  <->  ( v  i^i 
X )  C_  ( `' F " u ) )
10197, 100syl6bbr 254 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  /\  v  e.  J
)  ->  ( ( F " v )  C_  u 
<->  -.  ( v  i^i  ( X  \  ( `' F " u ) ) )  =/=  (/) ) )
102101anbi2d 684 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  /\  v  e.  J
)  ->  ( ( P  e.  v  /\  ( F " v ) 
C_  u )  <->  ( P  e.  v  /\  -.  (
v  i^i  ( X  \  ( `' F "
u ) ) )  =/=  (/) ) ) )
103102rexbidva 2645 . . . . . . 7  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  ( E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u )  <->  E. v  e.  J  ( P  e.  v  /\  -.  (
v  i^i  ( X  \  ( `' F "
u ) ) )  =/=  (/) ) ) )
104 rexanali 2674 . . . . . . 7  |-  ( E. v  e.  J  ( P  e.  v  /\  -.  ( v  i^i  ( X  \  ( `' F " u ) ) )  =/=  (/) )  <->  -.  A. v  e.  J  ( P  e.  v  ->  ( v  i^i  ( X  \ 
( `' F "
u ) ) )  =/=  (/) ) )
105103, 104syl6bb 252 . . . . . 6  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  ( E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u )  <->  -.  A. v  e.  J  ( P  e.  v  ->  ( v  i^i  ( X  \ 
( `' F "
u ) ) )  =/=  (/) ) ) )
10683, 105mpbird 223 . . . . 5  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  (
u  e.  K  /\  ( F `  P )  e.  u ) )  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
)
107106expr 598 . . . 4  |-  ( ( ( ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  /\  u  e.  K )  ->  (
( F `  P
)  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
) )
108107ralrimiva 2711 . . 3  |-  ( (
ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  ->  A. u  e.  K  ( ( F `  P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) )
109 iscnp 17184 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. u  e.  K  ( ( F `
 P )  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v )  C_  u ) ) ) ) )
1101, 2, 78, 109syl3anc 1183 . . . 4  |-  ( ph  ->  ( F  e.  ( ( J  CnP  K
) `  P )  <->  ( F : X --> Y  /\  A. u  e.  K  ( ( F `  P
)  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
) ) ) )
111110adantr 451 . . 3  |-  ( (
ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. u  e.  K  (
( F `  P
)  e.  u  ->  E. v  e.  J  ( P  e.  v  /\  ( F " v
)  C_  u )
) ) ) )
11213, 108, 111mpbir2and 888 . 2  |-  ( (
ph  /\  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) )  ->  F  e.  ( ( J  CnP  K ) `  P ) )
11312, 112impbida 805 1  |-  ( ph  ->  ( F  e.  ( ( J  CnP  K
) `  P )  <->  ( F : X --> Y  /\  A. f ( ( f : NN --> X  /\  f ( ~~> t `  J ) P )  ->  ( F  o.  f ) ( ~~> t `  K ) ( F `
 P ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    F. wfal 1322   A.wal 1545   E.wex 1546    = wceq 1647    e. wcel 1715    =/= wne 2529   A.wral 2628   E.wrex 2629    \ cdif 3235    i^i cin 3237    C_ wss 3238   (/)c0 3543   U.cuni 3929   class class class wbr 4125   `'ccnv 4791   dom cdm 4792   "cima 4795    o. ccom 4796   Fun wfun 5352    Fn wfn 5353   -->wf 5354   ` cfv 5358  (class class class)co 5981   1c1 8885   NNcn 9893   ZZcz 10175   ZZ>=cuz 10381   Topctop 16848  TopOnctopon 16849   clsccl 16972    CnP ccnp 17172   ~~> tclm 17173   1stcc1stc 17380
This theorem is referenced by:  1stccn  17406  metcnp4  18950
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-inf2 7489  ax-cc 8208  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-fal 1325  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-iin 4010  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-oadd 6625  df-er 6802  df-map 6917  df-pm 6918  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-nn 9894  df-n0 10115  df-z 10176  df-uz 10382  df-fz 10936  df-top 16853  df-topon 16856  df-cld 16973  df-ntr 16974  df-cls 16975  df-cnp 17175  df-lm 17176  df-1stc 17382
  Copyright terms: Public domain W3C validator