MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stcelcls Unicode version

Theorem 1stcelcls 17187
Description: A point belongs to the closure of a subset iff there is a sequence in the subset converging to it. Theorem 1.4-6(a) of [Kreyszig] p. 30. This proof uses countable choice ax-cc 8061. A space satisfying the conclusion of this theorem is called a sequential space, so the theorem can also be stated as "every first-countable space is a sequential space". (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
1stcelcls.1  |-  X  = 
U. J
Assertion
Ref Expression
1stcelcls  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  <->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) ) )
Distinct variable groups:    f, J    P, f    S, f    f, X

Proof of Theorem 1stcelcls
Dummy variables  g 
j  k  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 730 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  J  e.  1stc )
2 1stctop 17169 . . . . . . 7  |-  ( J  e.  1stc  ->  J  e. 
Top )
3 1stcelcls.1 . . . . . . . 8  |-  X  = 
U. J
43clsss3 16796 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  C_  X )
52, 4sylan 457 . . . . . 6  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  (
( cls `  J
) `  S )  C_  X )
65sselda 3180 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  P  e.  X )
731stcfb 17171 . . . . 5  |-  ( ( J  e.  1stc  /\  P  e.  X )  ->  E. g
( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k
)  /\  ( g `  ( k  +  1 ) )  C_  (
g `  k )
)  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k )  C_  x
) ) )
81, 6, 7syl2anc 642 . . . 4  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  E. g
( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k
)  /\  ( g `  ( k  +  1 ) )  C_  (
g `  k )
)  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k )  C_  x
) ) )
9 simpr1 961 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  g : NN --> J )
10 ffvelrn 5663 . . . . . . . . . . . . 13  |-  ( ( g : NN --> J  /\  n  e.  NN )  ->  ( g `  n
)  e.  J )
119, 10sylan 457 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  (
g `  n )  e.  J )
123elcls2 16811 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( P  e.  ( ( cls `  J
) `  S )  <->  ( P  e.  X  /\  A. y  e.  J  ( P  e.  y  -> 
( y  i^i  S
)  =/=  (/) ) ) ) )
132, 12sylan 457 . . . . . . . . . . . . . 14  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  <->  ( P  e.  X  /\  A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) ) ) ) )
1413simplbda 607 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) ) )
1514ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) ) )
16 simpr2 962 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  A. k  e.  NN  ( P  e.  ( g `  k
)  /\  ( g `  ( k  +  1 ) )  C_  (
g `  k )
) )
17 simpl 443 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  ( g `
 k )  /\  ( g `  (
k  +  1 ) )  C_  ( g `  k ) )  ->  P  e.  ( g `  k ) )
1817ralimi 2618 . . . . . . . . . . . . . 14  |-  ( A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  ->  A. k  e.  NN  P  e.  ( g `  k ) )
1916, 18syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  A. k  e.  NN  P  e.  ( g `  k ) )
20 fveq2 5525 . . . . . . . . . . . . . . 15  |-  ( k  =  n  ->  (
g `  k )  =  ( g `  n ) )
2120eleq2d 2350 . . . . . . . . . . . . . 14  |-  ( k  =  n  ->  ( P  e.  ( g `  k )  <->  P  e.  ( g `  n
) ) )
2221rspccva 2883 . . . . . . . . . . . . 13  |-  ( ( A. k  e.  NN  P  e.  ( g `  k )  /\  n  e.  NN )  ->  P  e.  ( g `  n
) )
2319, 22sylan 457 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  P  e.  ( g `  n
) )
24 eleq2 2344 . . . . . . . . . . . . . 14  |-  ( y  =  ( g `  n )  ->  ( P  e.  y  <->  P  e.  ( g `  n
) ) )
25 ineq1 3363 . . . . . . . . . . . . . . 15  |-  ( y  =  ( g `  n )  ->  (
y  i^i  S )  =  ( ( g `
 n )  i^i 
S ) )
2625neeq1d 2459 . . . . . . . . . . . . . 14  |-  ( y  =  ( g `  n )  ->  (
( y  i^i  S
)  =/=  (/)  <->  ( (
g `  n )  i^i  S )  =/=  (/) ) )
2724, 26imbi12d 311 . . . . . . . . . . . . 13  |-  ( y  =  ( g `  n )  ->  (
( P  e.  y  ->  ( y  i^i 
S )  =/=  (/) )  <->  ( P  e.  ( g `  n
)  ->  ( (
g `  n )  i^i  S )  =/=  (/) ) ) )
2827rspcv 2880 . . . . . . . . . . . 12  |-  ( ( g `  n )  e.  J  ->  ( A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S
)  =/=  (/) )  -> 
( P  e.  ( g `  n )  ->  ( ( g `
 n )  i^i 
S )  =/=  (/) ) ) )
2911, 15, 23, 28syl3c 57 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  (
( g `  n
)  i^i  S )  =/=  (/) )
30 elin 3358 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ( g `
 n )  i^i 
S )  <->  ( x  e.  ( g `  n
)  /\  x  e.  S ) )
31 ancom 437 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( g `
 n )  /\  x  e.  S )  <->  ( x  e.  S  /\  x  e.  ( g `  n ) ) )
3230, 31bitri 240 . . . . . . . . . . . . 13  |-  ( x  e.  ( ( g `
 n )  i^i 
S )  <->  ( x  e.  S  /\  x  e.  ( g `  n
) ) )
3332exbii 1569 . . . . . . . . . . . 12  |-  ( E. x  x  e.  ( ( g `  n
)  i^i  S )  <->  E. x ( x  e.  S  /\  x  e.  ( g `  n
) ) )
34 n0 3464 . . . . . . . . . . . 12  |-  ( ( ( g `  n
)  i^i  S )  =/=  (/)  <->  E. x  x  e.  ( ( g `  n )  i^i  S
) )
35 df-rex 2549 . . . . . . . . . . . 12  |-  ( E. x  e.  S  x  e.  ( g `  n )  <->  E. x
( x  e.  S  /\  x  e.  (
g `  n )
) )
3633, 34, 353bitr4i 268 . . . . . . . . . . 11  |-  ( ( ( g `  n
)  i^i  S )  =/=  (/)  <->  E. x  e.  S  x  e.  ( g `  n ) )
3729, 36sylib 188 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  E. x  e.  S  x  e.  ( g `  n
) )
38 simplr 731 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  S  C_  X
)
392ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  J  e.  Top )
403topopn 16652 . . . . . . . . . . . . . . 15  |-  ( J  e.  Top  ->  X  e.  J )
4139, 40syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  X  e.  J )
42 ssexg 4160 . . . . . . . . . . . . . 14  |-  ( ( S  C_  X  /\  X  e.  J )  ->  S  e.  _V )
4338, 41, 42syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  S  e.  _V )
44 fvi 5579 . . . . . . . . . . . . 13  |-  ( S  e.  _V  ->  (  _I  `  S )  =  S )
4543, 44syl 15 . . . . . . . . . . . 12  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  (  _I  `  S )  =  S )
4645ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  (  _I  `  S )  =  S )
4746rexeqdv 2743 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  ( E. x  e.  (  _I  `  S ) x  e.  ( g `  n )  <->  E. x  e.  S  x  e.  ( g `  n
) ) )
4837, 47mpbird 223 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  E. x  e.  (  _I  `  S
) x  e.  ( g `  n ) )
4948ralrimiva 2626 . . . . . . . 8  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  A. n  e.  NN  E. x  e.  (  _I  `  S
) x  e.  ( g `  n ) )
50 fvex 5539 . . . . . . . . 9  |-  (  _I 
`  S )  e. 
_V
51 nnenom 11042 . . . . . . . . 9  |-  NN  ~~  om
52 eleq1 2343 . . . . . . . . 9  |-  ( x  =  ( f `  n )  ->  (
x  e.  ( g `
 n )  <->  ( f `  n )  e.  ( g `  n ) ) )
5350, 51, 52axcc4 8065 . . . . . . . 8  |-  ( A. n  e.  NN  E. x  e.  (  _I  `  S
) x  e.  ( g `  n )  ->  E. f ( f : NN --> (  _I 
`  S )  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )
5449, 53syl 15 . . . . . . 7  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  E. f
( f : NN --> (  _I  `  S )  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) ) )
55 feq3 5377 . . . . . . . . . . . 12  |-  ( (  _I  `  S )  =  S  ->  (
f : NN --> (  _I 
`  S )  <->  f : NN
--> S ) )
5645, 55syl 15 . . . . . . . . . . 11  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  ( f : NN --> (  _I  `  S )  <->  f : NN
--> S ) )
5756biimpd 198 . . . . . . . . . 10  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  ( f : NN --> (  _I  `  S )  ->  f : NN --> S ) )
5857adantr 451 . . . . . . . . 9  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  (
f : NN --> (  _I 
`  S )  -> 
f : NN --> S ) )
596ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  P  e.  X )
60 simplr3 999 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
)
61 eleq2 2344 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  ( P  e.  x  <->  P  e.  y ) )
62 fveq2 5525 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  j  ->  (
g `  k )  =  ( g `  j ) )
6362sseq1d 3205 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  j  ->  (
( g `  k
)  C_  x  <->  ( g `  j )  C_  x
) )
6463cbvrexv 2765 . . . . . . . . . . . . . . . . . 18  |-  ( E. k  e.  NN  (
g `  k )  C_  x  <->  E. j  e.  NN  ( g `  j
)  C_  x )
65 sseq2 3200 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  y  ->  (
( g `  j
)  C_  x  <->  ( g `  j )  C_  y
) )
6665rexbidv 2564 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  ( E. j  e.  NN  ( g `  j
)  C_  x  <->  E. j  e.  NN  ( g `  j )  C_  y
) )
6764, 66syl5bb 248 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  ( E. k  e.  NN  ( g `  k
)  C_  x  <->  E. j  e.  NN  ( g `  j )  C_  y
) )
6861, 67imbi12d 311 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  (
( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )  <->  ( P  e.  y  ->  E. j  e.  NN  ( g `  j
)  C_  y )
) )
6968rspccva 2883 . . . . . . . . . . . . . . 15  |-  ( ( A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )  /\  y  e.  J
)  ->  ( P  e.  y  ->  E. j  e.  NN  ( g `  j )  C_  y
) )
7060, 69sylan 457 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  y  e.  J )  ->  ( P  e.  y  ->  E. j  e.  NN  ( g `  j
)  C_  y )
)
71 simpr 447 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( P  e.  ( g `
 k )  /\  ( g `  (
k  +  1 ) )  C_  ( g `  k ) )  -> 
( g `  (
k  +  1 ) )  C_  ( g `  k ) )
7271ralimi 2618 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  ->  A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k ) )
7316, 72syl 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )
)
7473adantr 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k ) )
75 simprrr 741 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  j  e.  NN )
76 fveq2 5525 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  =  j  ->  (
g `  n )  =  ( g `  j ) )
7776sseq1d 3205 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  =  j  ->  (
( g `  n
)  C_  ( g `  j )  <->  ( g `  j )  C_  (
g `  j )
) )
7877imbi2d 307 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  =  j  ->  (
( ( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  ->  ( g `  n )  C_  (
g `  j )
)  <->  ( ( A. k  e.  NN  (
g `  ( k  +  1 ) ) 
C_  ( g `  k )  /\  j  e.  NN )  ->  (
g `  j )  C_  ( g `  j
) ) ) )
79 fveq2 5525 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  =  m  ->  (
g `  n )  =  ( g `  m ) )
8079sseq1d 3205 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  =  m  ->  (
( g `  n
)  C_  ( g `  j )  <->  ( g `  m )  C_  (
g `  j )
) )
8180imbi2d 307 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  =  m  ->  (
( ( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  ->  ( g `  n )  C_  (
g `  j )
)  <->  ( ( A. k  e.  NN  (
g `  ( k  +  1 ) ) 
C_  ( g `  k )  /\  j  e.  NN )  ->  (
g `  m )  C_  ( g `  j
) ) ) )
82 fveq2 5525 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  =  ( m  + 
1 )  ->  (
g `  n )  =  ( g `  ( m  +  1
) ) )
8382sseq1d 3205 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  =  ( m  + 
1 )  ->  (
( g `  n
)  C_  ( g `  j )  <->  ( g `  ( m  +  1 ) )  C_  (
g `  j )
) )
8483imbi2d 307 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  =  ( m  + 
1 )  ->  (
( ( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  ->  ( g `  n )  C_  (
g `  j )
)  <->  ( ( A. k  e.  NN  (
g `  ( k  +  1 ) ) 
C_  ( g `  k )  /\  j  e.  NN )  ->  (
g `  ( m  +  1 ) ) 
C_  ( g `  j ) ) ) )
85 ssid 3197 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( g `
 j )  C_  ( g `  j
)
8685a1ii 24 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  ZZ  ->  (
( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  ->  ( g `  j )  C_  (
g `  j )
) )
87 nnuz 10263 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  NN  =  ( ZZ>= `  1 )
8887uztrn2 10245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( j  e.  NN  /\  m  e.  ( ZZ>= `  j ) )  ->  m  e.  NN )
89 oveq1 5865 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( k  =  m  ->  (
k  +  1 )  =  ( m  + 
1 ) )
9089fveq2d 5529 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( k  =  m  ->  (
g `  ( k  +  1 ) )  =  ( g `  ( m  +  1
) ) )
91 fveq2 5525 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( k  =  m  ->  (
g `  k )  =  ( g `  m ) )
9290, 91sseq12d 3207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( k  =  m  ->  (
( g `  (
k  +  1 ) )  C_  ( g `  k )  <->  ( g `  ( m  +  1 ) )  C_  (
g `  m )
) )
9392rspccva 2883 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  m  e.  NN )  ->  (
g `  ( m  +  1 ) ) 
C_  ( g `  m ) )
9488, 93sylan2 460 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  (
j  e.  NN  /\  m  e.  ( ZZ>= `  j ) ) )  ->  ( g `  ( m  +  1
) )  C_  (
g `  m )
)
9594anassrs 629 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  /\  m  e.  (
ZZ>= `  j ) )  ->  ( g `  ( m  +  1
) )  C_  (
g `  m )
)
96 sstr2 3186 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( g `  ( m  +  1 ) ) 
C_  ( g `  m )  ->  (
( g `  m
)  C_  ( g `  j )  ->  (
g `  ( m  +  1 ) ) 
C_  ( g `  j ) ) )
9795, 96syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  /\  m  e.  (
ZZ>= `  j ) )  ->  ( ( g `
 m )  C_  ( g `  j
)  ->  ( g `  ( m  +  1 ) )  C_  (
g `  j )
) )
9897expcom 424 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( m  e.  ( ZZ>= `  j
)  ->  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  j  e.  NN )  ->  (
( g `  m
)  C_  ( g `  j )  ->  (
g `  ( m  +  1 ) ) 
C_  ( g `  j ) ) ) )
9998a2d 23 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( m  e.  ( ZZ>= `  j
)  ->  ( (
( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  ->  ( g `  m )  C_  (
g `  j )
)  ->  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  j  e.  NN )  ->  (
g `  ( m  +  1 ) ) 
C_  ( g `  j ) ) ) )
10078, 81, 84, 81, 86, 99uzind4 10276 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( m  e.  ( ZZ>= `  j
)  ->  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  j  e.  NN )  ->  (
g `  m )  C_  ( g `  j
) ) )
101100com12 27 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  j  e.  NN )  ->  (
m  e.  ( ZZ>= `  j )  ->  (
g `  m )  C_  ( g `  j
) ) )
102101ralrimiv 2625 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  j  e.  NN )  ->  A. m  e.  ( ZZ>= `  j )
( g `  m
)  C_  ( g `  j ) )
10374, 75, 102syl2anc 642 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  A. m  e.  (
ZZ>= `  j ) ( g `  m ) 
C_  ( g `  j ) )
10475, 88sylan 457 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  m  e.  NN )
105 simplr 731 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) )  ->  A. n  e.  NN  ( f `  n
)  e.  ( g `
 n ) )
106105ad2antlr 707 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  A. n  e.  NN  ( f `  n
)  e.  ( g `
 n ) )
107 fveq2 5525 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  =  m  ->  (
f `  n )  =  ( f `  m ) )
108107, 79eleq12d 2351 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  =  m  ->  (
( f `  n
)  e.  ( g `
 n )  <->  ( f `  m )  e.  ( g `  m ) ) )
109108rspcv 2880 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  e.  NN  ->  ( A. n  e.  NN  ( f `  n
)  e.  ( g `
 n )  -> 
( f `  m
)  e.  ( g `
 m ) ) )
110104, 106, 109sylc 56 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  ( f `  m )  e.  ( g `  m ) )
111110ralrimiva 2626 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  A. m  e.  (
ZZ>= `  j ) ( f `  m )  e.  ( g `  m ) )
112 r19.26 2675 . . . . . . . . . . . . . . . . . . . 20  |-  ( A. m  e.  ( ZZ>= `  j ) ( ( g `  m ) 
C_  ( g `  j )  /\  (
f `  m )  e.  ( g `  m
) )  <->  ( A. m  e.  ( ZZ>= `  j ) ( g `
 m )  C_  ( g `  j
)  /\  A. m  e.  ( ZZ>= `  j )
( f `  m
)  e.  ( g `
 m ) ) )
113103, 111, 112sylanbrc 645 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  A. m  e.  (
ZZ>= `  j ) ( ( g `  m
)  C_  ( g `  j )  /\  (
f `  m )  e.  ( g `  m
) ) )
114 ssel2 3175 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( g `  m
)  C_  ( g `  j )  /\  (
f `  m )  e.  ( g `  m
) )  ->  (
f `  m )  e.  ( g `  j
) )
115114ralimi 2618 . . . . . . . . . . . . . . . . . . 19  |-  ( A. m  e.  ( ZZ>= `  j ) ( ( g `  m ) 
C_  ( g `  j )  /\  (
f `  m )  e.  ( g `  m
) )  ->  A. m  e.  ( ZZ>= `  j )
( f `  m
)  e.  ( g `
 j ) )
116113, 115syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  A. m  e.  (
ZZ>= `  j ) ( f `  m )  e.  ( g `  j ) )
117 ssel 3174 . . . . . . . . . . . . . . . . . . 19  |-  ( ( g `  j ) 
C_  y  ->  (
( f `  m
)  e.  ( g `
 j )  -> 
( f `  m
)  e.  y ) )
118117ralimdv 2622 . . . . . . . . . . . . . . . . . 18  |-  ( ( g `  j ) 
C_  y  ->  ( A. m  e.  ( ZZ>=
`  j ) ( f `  m )  e.  ( g `  j )  ->  A. m  e.  ( ZZ>= `  j )
( f `  m
)  e.  y ) )
119116, 118syl5com 26 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  ( ( g `
 j )  C_  y  ->  A. m  e.  (
ZZ>= `  j ) ( f `  m )  e.  y ) )
120119anassrs 629 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  ( y  e.  J  /\  j  e.  NN ) )  ->  (
( g `  j
)  C_  y  ->  A. m  e.  ( ZZ>= `  j ) ( f `
 m )  e.  y ) )
121120anassrs 629 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  y  e.  J )  /\  j  e.  NN )  ->  ( ( g `
 j )  C_  y  ->  A. m  e.  (
ZZ>= `  j ) ( f `  m )  e.  y ) )
122121reximdva 2655 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  y  e.  J )  ->  ( E. j  e.  NN  ( g `  j )  C_  y  ->  E. j  e.  NN  A. m  e.  ( ZZ>= `  j ) ( f `
 m )  e.  y ) )
12370, 122syld 40 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  y  e.  J )  ->  ( P  e.  y  ->  E. j  e.  NN  A. m  e.  ( ZZ>= `  j ) ( f `
 m )  e.  y ) )
124123ralrimiva 2626 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  A. y  e.  J  ( P  e.  y  ->  E. j  e.  NN  A. m  e.  ( ZZ>= `  j ) ( f `
 m )  e.  y ) )
12539ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  J  e.  Top )
1263toptopon 16671 . . . . . . . . . . . . . 14  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
127125, 126sylib 188 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  J  e.  (TopOn `  X
) )
128 1z 10053 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
129128a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  -> 
1  e.  ZZ )
130 simprl 732 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  -> 
f : NN --> S )
13138ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  S  C_  X )
132 fss 5397 . . . . . . . . . . . . . 14  |-  ( ( f : NN --> S  /\  S  C_  X )  -> 
f : NN --> X )
133130, 131, 132syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  -> 
f : NN --> X )
134 eqidd 2284 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  m  e.  NN )  ->  ( f `  m
)  =  ( f `
 m ) )
135127, 87, 129, 133, 134lmbrf 16990 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  -> 
( f ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. y  e.  J  ( P  e.  y  ->  E. j  e.  NN  A. m  e.  ( ZZ>= `  j )
( f `  m
)  e.  y ) ) ) )
13659, 124, 135mpbir2and 888 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  -> 
f ( ~~> t `  J ) P )
137136expr 598 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  f : NN --> S )  -> 
( A. n  e.  NN  ( f `  n )  e.  ( g `  n )  ->  f ( ~~> t `  J ) P ) )
138137imdistanda 674 . . . . . . . . 9  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  ->  ( f : NN --> S  /\  f
( ~~> t `  J
) P ) ) )
13958, 138syland 467 . . . . . . . 8  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  (
( f : NN --> (  _I  `  S )  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  ->  ( f : NN --> S  /\  f
( ~~> t `  J
) P ) ) )
140139eximdv 1608 . . . . . . 7  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  ( E. f ( f : NN --> (  _I  `  S )  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) )  ->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) ) )
14154, 140mpd 14 . . . . . 6  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) )
142141ex 423 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  ( (
g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
)  ->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) ) )
143142exlimdv 1664 . . . 4  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  ( E. g ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
)  ->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) ) )
1448, 143mpd 14 . . 3  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) )
145144ex 423 . 2  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  ->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) ) )
1462ad2antrr 706 . . . . . 6  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  J  e.  Top )
147146, 126sylib 188 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  J  e.  (TopOn `  X ) )
148128a1i 10 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  1  e.  ZZ )
149 simprr 733 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  f ( ~~> t `  J ) P )
150 simprl 732 . . . . . 6  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  f : NN
--> S )
151 ffvelrn 5663 . . . . . 6  |-  ( ( f : NN --> S  /\  k  e.  NN )  ->  ( f `  k
)  e.  S )
152150, 151sylan 457 . . . . 5  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  ( f : NN --> S  /\  f
( ~~> t `  J
) P ) )  /\  k  e.  NN )  ->  ( f `  k )  e.  S
)
153 simplr 731 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  S  C_  X
)
15487, 147, 148, 149, 152, 153lmcls 17030 . . . 4  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  P  e.  ( ( cls `  J
) `  S )
)
155154ex 423 . . 3  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  (
( f : NN --> S  /\  f ( ~~> t `  J ) P )  ->  P  e.  ( ( cls `  J
) `  S )
) )
156155exlimdv 1664 . 2  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  ( E. f ( f : NN --> S  /\  f
( ~~> t `  J
) P )  ->  P  e.  ( ( cls `  J ) `  S ) ) )
157145, 156impbid 183 1  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  <->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788    i^i cin 3151    C_ wss 3152   (/)c0 3455   U.cuni 3827   class class class wbr 4023    _I cid 4304   -->wf 5251   ` cfv 5255  (class class class)co 5858   1c1 8738    + caddc 8740   NNcn 9746   ZZcz 10024   ZZ>=cuz 10230   Topctop 16631  TopOnctopon 16632   clsccl 16755   ~~> tclm 16956   1stcc1stc 17163
This theorem is referenced by:  1stccnp  17188  hausmapdom  17226  1stckgen  17249  metelcls  18730
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cc 8061  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-top 16636  df-topon 16639  df-cld 16756  df-ntr 16757  df-cls 16758  df-lm 16959  df-1stc 17165
  Copyright terms: Public domain W3C validator