MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stcelcls Unicode version

Theorem 1stcelcls 17203
Description: A point belongs to the closure of a subset iff there is a sequence in the subset converging to it. Theorem 1.4-6(a) of [Kreyszig] p. 30. This proof uses countable choice ax-cc 8077. A space satisfying the conclusion of this theorem is called a sequential space, so the theorem can also be stated as "every first-countable space is a sequential space". (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypothesis
Ref Expression
1stcelcls.1  |-  X  = 
U. J
Assertion
Ref Expression
1stcelcls  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  <->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) ) )
Distinct variable groups:    f, J    P, f    S, f    f, X

Proof of Theorem 1stcelcls
Dummy variables  g 
j  k  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 730 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  J  e.  1stc )
2 1stctop 17185 . . . . . . 7  |-  ( J  e.  1stc  ->  J  e. 
Top )
3 1stcelcls.1 . . . . . . . 8  |-  X  = 
U. J
43clsss3 16812 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  C_  X )
52, 4sylan 457 . . . . . 6  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  (
( cls `  J
) `  S )  C_  X )
65sselda 3193 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  P  e.  X )
731stcfb 17187 . . . . 5  |-  ( ( J  e.  1stc  /\  P  e.  X )  ->  E. g
( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k
)  /\  ( g `  ( k  +  1 ) )  C_  (
g `  k )
)  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k )  C_  x
) ) )
81, 6, 7syl2anc 642 . . . 4  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  E. g
( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k
)  /\  ( g `  ( k  +  1 ) )  C_  (
g `  k )
)  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k )  C_  x
) ) )
9 simpr1 961 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  g : NN --> J )
10 ffvelrn 5679 . . . . . . . . . . . . 13  |-  ( ( g : NN --> J  /\  n  e.  NN )  ->  ( g `  n
)  e.  J )
119, 10sylan 457 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  (
g `  n )  e.  J )
123elcls2 16827 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( P  e.  ( ( cls `  J
) `  S )  <->  ( P  e.  X  /\  A. y  e.  J  ( P  e.  y  -> 
( y  i^i  S
)  =/=  (/) ) ) ) )
132, 12sylan 457 . . . . . . . . . . . . . 14  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  <->  ( P  e.  X  /\  A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) ) ) ) )
1413simplbda 607 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) ) )
1514ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S )  =/=  (/) ) )
16 simpr2 962 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  A. k  e.  NN  ( P  e.  ( g `  k
)  /\  ( g `  ( k  +  1 ) )  C_  (
g `  k )
) )
17 simpl 443 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  ( g `
 k )  /\  ( g `  (
k  +  1 ) )  C_  ( g `  k ) )  ->  P  e.  ( g `  k ) )
1817ralimi 2631 . . . . . . . . . . . . . 14  |-  ( A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  ->  A. k  e.  NN  P  e.  ( g `  k ) )
1916, 18syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  A. k  e.  NN  P  e.  ( g `  k ) )
20 fveq2 5541 . . . . . . . . . . . . . . 15  |-  ( k  =  n  ->  (
g `  k )  =  ( g `  n ) )
2120eleq2d 2363 . . . . . . . . . . . . . 14  |-  ( k  =  n  ->  ( P  e.  ( g `  k )  <->  P  e.  ( g `  n
) ) )
2221rspccva 2896 . . . . . . . . . . . . 13  |-  ( ( A. k  e.  NN  P  e.  ( g `  k )  /\  n  e.  NN )  ->  P  e.  ( g `  n
) )
2319, 22sylan 457 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  P  e.  ( g `  n
) )
24 eleq2 2357 . . . . . . . . . . . . . 14  |-  ( y  =  ( g `  n )  ->  ( P  e.  y  <->  P  e.  ( g `  n
) ) )
25 ineq1 3376 . . . . . . . . . . . . . . 15  |-  ( y  =  ( g `  n )  ->  (
y  i^i  S )  =  ( ( g `
 n )  i^i 
S ) )
2625neeq1d 2472 . . . . . . . . . . . . . 14  |-  ( y  =  ( g `  n )  ->  (
( y  i^i  S
)  =/=  (/)  <->  ( (
g `  n )  i^i  S )  =/=  (/) ) )
2724, 26imbi12d 311 . . . . . . . . . . . . 13  |-  ( y  =  ( g `  n )  ->  (
( P  e.  y  ->  ( y  i^i 
S )  =/=  (/) )  <->  ( P  e.  ( g `  n
)  ->  ( (
g `  n )  i^i  S )  =/=  (/) ) ) )
2827rspcv 2893 . . . . . . . . . . . 12  |-  ( ( g `  n )  e.  J  ->  ( A. y  e.  J  ( P  e.  y  ->  ( y  i^i  S
)  =/=  (/) )  -> 
( P  e.  ( g `  n )  ->  ( ( g `
 n )  i^i 
S )  =/=  (/) ) ) )
2911, 15, 23, 28syl3c 57 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  (
( g `  n
)  i^i  S )  =/=  (/) )
30 elin 3371 . . . . . . . . . . . . . 14  |-  ( x  e.  ( ( g `
 n )  i^i 
S )  <->  ( x  e.  ( g `  n
)  /\  x  e.  S ) )
31 ancom 437 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( g `
 n )  /\  x  e.  S )  <->  ( x  e.  S  /\  x  e.  ( g `  n ) ) )
3230, 31bitri 240 . . . . . . . . . . . . 13  |-  ( x  e.  ( ( g `
 n )  i^i 
S )  <->  ( x  e.  S  /\  x  e.  ( g `  n
) ) )
3332exbii 1572 . . . . . . . . . . . 12  |-  ( E. x  x  e.  ( ( g `  n
)  i^i  S )  <->  E. x ( x  e.  S  /\  x  e.  ( g `  n
) ) )
34 n0 3477 . . . . . . . . . . . 12  |-  ( ( ( g `  n
)  i^i  S )  =/=  (/)  <->  E. x  x  e.  ( ( g `  n )  i^i  S
) )
35 df-rex 2562 . . . . . . . . . . . 12  |-  ( E. x  e.  S  x  e.  ( g `  n )  <->  E. x
( x  e.  S  /\  x  e.  (
g `  n )
) )
3633, 34, 353bitr4i 268 . . . . . . . . . . 11  |-  ( ( ( g `  n
)  i^i  S )  =/=  (/)  <->  E. x  e.  S  x  e.  ( g `  n ) )
3729, 36sylib 188 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  E. x  e.  S  x  e.  ( g `  n
) )
38 simplr 731 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  S  C_  X
)
392ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  J  e.  Top )
403topopn 16668 . . . . . . . . . . . . . . 15  |-  ( J  e.  Top  ->  X  e.  J )
4139, 40syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  X  e.  J )
42 ssexg 4176 . . . . . . . . . . . . . 14  |-  ( ( S  C_  X  /\  X  e.  J )  ->  S  e.  _V )
4338, 41, 42syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  S  e.  _V )
44 fvi 5595 . . . . . . . . . . . . 13  |-  ( S  e.  _V  ->  (  _I  `  S )  =  S )
4543, 44syl 15 . . . . . . . . . . . 12  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  (  _I  `  S )  =  S )
4645ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  (  _I  `  S )  =  S )
4746rexeqdv 2756 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  ( E. x  e.  (  _I  `  S ) x  e.  ( g `  n )  <->  E. x  e.  S  x  e.  ( g `  n
) ) )
4837, 47mpbird 223 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  n  e.  NN )  ->  E. x  e.  (  _I  `  S
) x  e.  ( g `  n ) )
4948ralrimiva 2639 . . . . . . . 8  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  A. n  e.  NN  E. x  e.  (  _I  `  S
) x  e.  ( g `  n ) )
50 fvex 5555 . . . . . . . . 9  |-  (  _I 
`  S )  e. 
_V
51 nnenom 11058 . . . . . . . . 9  |-  NN  ~~  om
52 eleq1 2356 . . . . . . . . 9  |-  ( x  =  ( f `  n )  ->  (
x  e.  ( g `
 n )  <->  ( f `  n )  e.  ( g `  n ) ) )
5350, 51, 52axcc4 8081 . . . . . . . 8  |-  ( A. n  e.  NN  E. x  e.  (  _I  `  S
) x  e.  ( g `  n )  ->  E. f ( f : NN --> (  _I 
`  S )  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )
5449, 53syl 15 . . . . . . 7  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  E. f
( f : NN --> (  _I  `  S )  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) ) )
55 feq3 5393 . . . . . . . . . . . 12  |-  ( (  _I  `  S )  =  S  ->  (
f : NN --> (  _I 
`  S )  <->  f : NN
--> S ) )
5645, 55syl 15 . . . . . . . . . . 11  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  ( f : NN --> (  _I  `  S )  <->  f : NN
--> S ) )
5756biimpd 198 . . . . . . . . . 10  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  ( f : NN --> (  _I  `  S )  ->  f : NN --> S ) )
5857adantr 451 . . . . . . . . 9  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  (
f : NN --> (  _I 
`  S )  -> 
f : NN --> S ) )
596ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  P  e.  X )
60 simplr3 999 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
)
61 eleq2 2357 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  ( P  e.  x  <->  P  e.  y ) )
62 fveq2 5541 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  j  ->  (
g `  k )  =  ( g `  j ) )
6362sseq1d 3218 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  j  ->  (
( g `  k
)  C_  x  <->  ( g `  j )  C_  x
) )
6463cbvrexv 2778 . . . . . . . . . . . . . . . . . 18  |-  ( E. k  e.  NN  (
g `  k )  C_  x  <->  E. j  e.  NN  ( g `  j
)  C_  x )
65 sseq2 3213 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  y  ->  (
( g `  j
)  C_  x  <->  ( g `  j )  C_  y
) )
6665rexbidv 2577 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  ( E. j  e.  NN  ( g `  j
)  C_  x  <->  E. j  e.  NN  ( g `  j )  C_  y
) )
6764, 66syl5bb 248 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  ( E. k  e.  NN  ( g `  k
)  C_  x  <->  E. j  e.  NN  ( g `  j )  C_  y
) )
6861, 67imbi12d 311 . . . . . . . . . . . . . . . 16  |-  ( x  =  y  ->  (
( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )  <->  ( P  e.  y  ->  E. j  e.  NN  ( g `  j
)  C_  y )
) )
6968rspccva 2896 . . . . . . . . . . . . . . 15  |-  ( ( A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )  /\  y  e.  J
)  ->  ( P  e.  y  ->  E. j  e.  NN  ( g `  j )  C_  y
) )
7060, 69sylan 457 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  y  e.  J )  ->  ( P  e.  y  ->  E. j  e.  NN  ( g `  j
)  C_  y )
)
71 simpr 447 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( P  e.  ( g `
 k )  /\  ( g `  (
k  +  1 ) )  C_  ( g `  k ) )  -> 
( g `  (
k  +  1 ) )  C_  ( g `  k ) )
7271ralimi 2631 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  ->  A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k ) )
7316, 72syl 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )
)
7473adantr 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k ) )
75 simprrr 741 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  j  e.  NN )
76 fveq2 5541 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  =  j  ->  (
g `  n )  =  ( g `  j ) )
7776sseq1d 3218 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  =  j  ->  (
( g `  n
)  C_  ( g `  j )  <->  ( g `  j )  C_  (
g `  j )
) )
7877imbi2d 307 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  =  j  ->  (
( ( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  ->  ( g `  n )  C_  (
g `  j )
)  <->  ( ( A. k  e.  NN  (
g `  ( k  +  1 ) ) 
C_  ( g `  k )  /\  j  e.  NN )  ->  (
g `  j )  C_  ( g `  j
) ) ) )
79 fveq2 5541 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  =  m  ->  (
g `  n )  =  ( g `  m ) )
8079sseq1d 3218 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  =  m  ->  (
( g `  n
)  C_  ( g `  j )  <->  ( g `  m )  C_  (
g `  j )
) )
8180imbi2d 307 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  =  m  ->  (
( ( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  ->  ( g `  n )  C_  (
g `  j )
)  <->  ( ( A. k  e.  NN  (
g `  ( k  +  1 ) ) 
C_  ( g `  k )  /\  j  e.  NN )  ->  (
g `  m )  C_  ( g `  j
) ) ) )
82 fveq2 5541 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  =  ( m  + 
1 )  ->  (
g `  n )  =  ( g `  ( m  +  1
) ) )
8382sseq1d 3218 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( n  =  ( m  + 
1 )  ->  (
( g `  n
)  C_  ( g `  j )  <->  ( g `  ( m  +  1 ) )  C_  (
g `  j )
) )
8483imbi2d 307 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  =  ( m  + 
1 )  ->  (
( ( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  ->  ( g `  n )  C_  (
g `  j )
)  <->  ( ( A. k  e.  NN  (
g `  ( k  +  1 ) ) 
C_  ( g `  k )  /\  j  e.  NN )  ->  (
g `  ( m  +  1 ) ) 
C_  ( g `  j ) ) ) )
85 ssid 3210 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( g `
 j )  C_  ( g `  j
)
8685a1ii 24 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  ZZ  ->  (
( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  ->  ( g `  j )  C_  (
g `  j )
) )
87 nnuz 10279 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  NN  =  ( ZZ>= `  1 )
8887uztrn2 10261 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( j  e.  NN  /\  m  e.  ( ZZ>= `  j ) )  ->  m  e.  NN )
89 oveq1 5881 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( k  =  m  ->  (
k  +  1 )  =  ( m  + 
1 ) )
9089fveq2d 5545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( k  =  m  ->  (
g `  ( k  +  1 ) )  =  ( g `  ( m  +  1
) ) )
91 fveq2 5541 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( k  =  m  ->  (
g `  k )  =  ( g `  m ) )
9290, 91sseq12d 3220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( k  =  m  ->  (
( g `  (
k  +  1 ) )  C_  ( g `  k )  <->  ( g `  ( m  +  1 ) )  C_  (
g `  m )
) )
9392rspccva 2896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  m  e.  NN )  ->  (
g `  ( m  +  1 ) ) 
C_  ( g `  m ) )
9488, 93sylan2 460 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  (
j  e.  NN  /\  m  e.  ( ZZ>= `  j ) ) )  ->  ( g `  ( m  +  1
) )  C_  (
g `  m )
)
9594anassrs 629 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  /\  m  e.  (
ZZ>= `  j ) )  ->  ( g `  ( m  +  1
) )  C_  (
g `  m )
)
96 sstr2 3199 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( g `  ( m  +  1 ) ) 
C_  ( g `  m )  ->  (
( g `  m
)  C_  ( g `  j )  ->  (
g `  ( m  +  1 ) ) 
C_  ( g `  j ) ) )
9795, 96syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  /\  m  e.  (
ZZ>= `  j ) )  ->  ( ( g `
 m )  C_  ( g `  j
)  ->  ( g `  ( m  +  1 ) )  C_  (
g `  j )
) )
9897expcom 424 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( m  e.  ( ZZ>= `  j
)  ->  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  j  e.  NN )  ->  (
( g `  m
)  C_  ( g `  j )  ->  (
g `  ( m  +  1 ) ) 
C_  ( g `  j ) ) ) )
9998a2d 23 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( m  e.  ( ZZ>= `  j
)  ->  ( (
( A. k  e.  NN  ( g `  ( k  +  1 ) )  C_  (
g `  k )  /\  j  e.  NN )  ->  ( g `  m )  C_  (
g `  j )
)  ->  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  j  e.  NN )  ->  (
g `  ( m  +  1 ) ) 
C_  ( g `  j ) ) ) )
10078, 81, 84, 81, 86, 99uzind4 10292 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( m  e.  ( ZZ>= `  j
)  ->  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  j  e.  NN )  ->  (
g `  m )  C_  ( g `  j
) ) )
101100com12 27 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  j  e.  NN )  ->  (
m  e.  ( ZZ>= `  j )  ->  (
g `  m )  C_  ( g `  j
) ) )
102101ralrimiv 2638 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A. k  e.  NN  ( g `  (
k  +  1 ) )  C_  ( g `  k )  /\  j  e.  NN )  ->  A. m  e.  ( ZZ>= `  j )
( g `  m
)  C_  ( g `  j ) )
10374, 75, 102syl2anc 642 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  A. m  e.  (
ZZ>= `  j ) ( g `  m ) 
C_  ( g `  j ) )
10475, 88sylan 457 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  m  e.  NN )
105 simplr 731 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) )  ->  A. n  e.  NN  ( f `  n
)  e.  ( g `
 n ) )
106105ad2antlr 707 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  A. n  e.  NN  ( f `  n
)  e.  ( g `
 n ) )
107 fveq2 5541 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( n  =  m  ->  (
f `  n )  =  ( f `  m ) )
108107, 79eleq12d 2364 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( n  =  m  ->  (
( f `  n
)  e.  ( g `
 n )  <->  ( f `  m )  e.  ( g `  m ) ) )
109108rspcv 2893 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( m  e.  NN  ->  ( A. n  e.  NN  ( f `  n
)  e.  ( g `
 n )  -> 
( f `  m
)  e.  ( g `
 m ) ) )
110104, 106, 109sylc 56 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  ( f `  m )  e.  ( g `  m ) )
111110ralrimiva 2639 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  A. m  e.  (
ZZ>= `  j ) ( f `  m )  e.  ( g `  m ) )
112 r19.26 2688 . . . . . . . . . . . . . . . . . . . 20  |-  ( A. m  e.  ( ZZ>= `  j ) ( ( g `  m ) 
C_  ( g `  j )  /\  (
f `  m )  e.  ( g `  m
) )  <->  ( A. m  e.  ( ZZ>= `  j ) ( g `
 m )  C_  ( g `  j
)  /\  A. m  e.  ( ZZ>= `  j )
( f `  m
)  e.  ( g `
 m ) ) )
113103, 111, 112sylanbrc 645 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  A. m  e.  (
ZZ>= `  j ) ( ( g `  m
)  C_  ( g `  j )  /\  (
f `  m )  e.  ( g `  m
) ) )
114 ssel2 3188 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( g `  m
)  C_  ( g `  j )  /\  (
f `  m )  e.  ( g `  m
) )  ->  (
f `  m )  e.  ( g `  j
) )
115114ralimi 2631 . . . . . . . . . . . . . . . . . . 19  |-  ( A. m  e.  ( ZZ>= `  j ) ( ( g `  m ) 
C_  ( g `  j )  /\  (
f `  m )  e.  ( g `  m
) )  ->  A. m  e.  ( ZZ>= `  j )
( f `  m
)  e.  ( g `
 j ) )
116113, 115syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  A. m  e.  (
ZZ>= `  j ) ( f `  m )  e.  ( g `  j ) )
117 ssel 3187 . . . . . . . . . . . . . . . . . . 19  |-  ( ( g `  j ) 
C_  y  ->  (
( f `  m
)  e.  ( g `
 j )  -> 
( f `  m
)  e.  y ) )
118117ralimdv 2635 . . . . . . . . . . . . . . . . . 18  |-  ( ( g `  j ) 
C_  y  ->  ( A. m  e.  ( ZZ>=
`  j ) ( f `  m )  e.  ( g `  j )  ->  A. m  e.  ( ZZ>= `  j )
( f `  m
)  e.  y ) )
119116, 118syl5com 26 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  /\  ( y  e.  J  /\  j  e.  NN ) ) )  ->  ( ( g `
 j )  C_  y  ->  A. m  e.  (
ZZ>= `  j ) ( f `  m )  e.  y ) )
120119anassrs 629 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  ( y  e.  J  /\  j  e.  NN ) )  ->  (
( g `  j
)  C_  y  ->  A. m  e.  ( ZZ>= `  j ) ( f `
 m )  e.  y ) )
121120anassrs 629 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  y  e.  J )  /\  j  e.  NN )  ->  ( ( g `
 j )  C_  y  ->  A. m  e.  (
ZZ>= `  j ) ( f `  m )  e.  y ) )
122121reximdva 2668 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  y  e.  J )  ->  ( E. j  e.  NN  ( g `  j )  C_  y  ->  E. j  e.  NN  A. m  e.  ( ZZ>= `  j ) ( f `
 m )  e.  y ) )
12370, 122syld 40 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  y  e.  J )  ->  ( P  e.  y  ->  E. j  e.  NN  A. m  e.  ( ZZ>= `  j ) ( f `
 m )  e.  y ) )
124123ralrimiva 2639 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  A. y  e.  J  ( P  e.  y  ->  E. j  e.  NN  A. m  e.  ( ZZ>= `  j ) ( f `
 m )  e.  y ) )
12539ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  J  e.  Top )
1263toptopon 16687 . . . . . . . . . . . . . 14  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
127125, 126sylib 188 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  J  e.  (TopOn `  X
) )
128 1z 10069 . . . . . . . . . . . . . 14  |-  1  e.  ZZ
129128a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  -> 
1  e.  ZZ )
130 simprl 732 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  -> 
f : NN --> S )
13138ad2antrr 706 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  ->  S  C_  X )
132 fss 5413 . . . . . . . . . . . . . 14  |-  ( ( f : NN --> S  /\  S  C_  X )  -> 
f : NN --> X )
133130, 131, 132syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  -> 
f : NN --> X )
134 eqidd 2297 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  /\  m  e.  NN )  ->  ( f `  m
)  =  ( f `
 m ) )
135127, 87, 129, 133, 134lmbrf 17006 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  -> 
( f ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. y  e.  J  ( P  e.  y  ->  E. j  e.  NN  A. m  e.  ( ZZ>= `  j )
( f `  m
)  e.  y ) ) ) )
13659, 124, 135mpbir2and 888 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  (
f : NN --> S  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) ) )  -> 
f ( ~~> t `  J ) P )
137136expr 598 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  /\  f : NN --> S )  -> 
( A. n  e.  NN  ( f `  n )  e.  ( g `  n )  ->  f ( ~~> t `  J ) P ) )
138137imdistanda 674 . . . . . . . . 9  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  (
( f : NN --> S  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  ->  ( f : NN --> S  /\  f
( ~~> t `  J
) P ) ) )
13958, 138syland 467 . . . . . . . 8  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  (
( f : NN --> (  _I  `  S )  /\  A. n  e.  NN  ( f `  n )  e.  ( g `  n ) )  ->  ( f : NN --> S  /\  f
( ~~> t `  J
) P ) ) )
140139eximdv 1612 . . . . . . 7  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  ( E. f ( f : NN --> (  _I  `  S )  /\  A. n  e.  NN  (
f `  n )  e.  ( g `  n
) )  ->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) ) )
14154, 140mpd 14 . . . . . 6  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  P  e.  ( ( cls `  J
) `  S )
)  /\  ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
) )  ->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) )
142141ex 423 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  ( (
g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
)  ->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) ) )
143142exlimdv 1626 . . . 4  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  ( E. g ( g : NN --> J  /\  A. k  e.  NN  ( P  e.  ( g `  k )  /\  (
g `  ( k  +  1 ) ) 
C_  ( g `  k ) )  /\  A. x  e.  J  ( P  e.  x  ->  E. k  e.  NN  ( g `  k
)  C_  x )
)  ->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) ) )
1448, 143mpd 14 . . 3  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  P  e.  (
( cls `  J
) `  S )
)  ->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) )
145144ex 423 . 2  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  ->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) ) )
1462ad2antrr 706 . . . . . 6  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  J  e.  Top )
147146, 126sylib 188 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  J  e.  (TopOn `  X ) )
148128a1i 10 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  1  e.  ZZ )
149 simprr 733 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  f ( ~~> t `  J ) P )
150 simprl 732 . . . . . 6  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  f : NN
--> S )
151 ffvelrn 5679 . . . . . 6  |-  ( ( f : NN --> S  /\  k  e.  NN )  ->  ( f `  k
)  e.  S )
152150, 151sylan 457 . . . . 5  |-  ( ( ( ( J  e. 
1stc  /\  S  C_  X
)  /\  ( f : NN --> S  /\  f
( ~~> t `  J
) P ) )  /\  k  e.  NN )  ->  ( f `  k )  e.  S
)
153 simplr 731 . . . . 5  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  S  C_  X
)
15487, 147, 148, 149, 152, 153lmcls 17046 . . . 4  |-  ( ( ( J  e.  1stc  /\  S  C_  X )  /\  ( f : NN --> S  /\  f ( ~~> t `  J ) P ) )  ->  P  e.  ( ( cls `  J
) `  S )
)
155154ex 423 . . 3  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  (
( f : NN --> S  /\  f ( ~~> t `  J ) P )  ->  P  e.  ( ( cls `  J
) `  S )
) )
156155exlimdv 1626 . 2  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  ( E. f ( f : NN --> S  /\  f
( ~~> t `  J
) P )  ->  P  e.  ( ( cls `  J ) `  S ) ) )
157145, 156impbid 183 1  |-  ( ( J  e.  1stc  /\  S  C_  X )  ->  ( P  e.  ( ( cls `  J ) `  S )  <->  E. f
( f : NN --> S  /\  f ( ~~> t `  J ) P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   _Vcvv 2801    i^i cin 3164    C_ wss 3165   (/)c0 3468   U.cuni 3843   class class class wbr 4039    _I cid 4320   -->wf 5267   ` cfv 5271  (class class class)co 5874   1c1 8754    + caddc 8756   NNcn 9762   ZZcz 10040   ZZ>=cuz 10246   Topctop 16647  TopOnctopon 16648   clsccl 16771   ~~> tclm 16972   1stcc1stc 17179
This theorem is referenced by:  1stccnp  17204  hausmapdom  17242  1stckgen  17265  metelcls  18746
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cc 8077  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-top 16652  df-topon 16655  df-cld 16772  df-ntr 16773  df-cls 16774  df-lm 16975  df-1stc 17181
  Copyright terms: Public domain W3C validator