MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2503lem1 Unicode version

Theorem 2503lem1 13135
Description: Lemma for 2503prm 13138. Calculate a power mod. In decimal, we calculate  2 ^ 1 8  =  5 1 2 ^ 2  =  1 0 4 N  +  1 8 3 2  ==  1 8 3 2. (Contributed by Mario Carneiro, 3-Mar-2014.) (Revised by Mario Carneiro, 20-Apr-2015.)
Hypothesis
Ref Expression
2503prm.1  |-  N  = ;;; 2 5 0 3
Assertion
Ref Expression
2503lem1  |-  ( ( 2 ^; 1 8 )  mod 
N )  =  (;;; 1 8 3 2  mod 
N )

Proof of Theorem 2503lem1
StepHypRef Expression
1 2503prm.1 . . 3  |-  N  = ;;; 2 5 0 3
2 2nn0 9982 . . . . . 6  |-  2  e.  NN0
3 5nn0 9985 . . . . . 6  |-  5  e.  NN0
42, 3deccl 10138 . . . . 5  |- ; 2 5  e.  NN0
5 0nn0 9980 . . . . 5  |-  0  e.  NN0
64, 5deccl 10138 . . . 4  |- ;; 2 5 0  e.  NN0
7 3nn 9878 . . . 4  |-  3  e.  NN
86, 7decnncl 10137 . . 3  |- ;;; 2 5 0 3  e.  NN
91, 8eqeltri 2353 . 2  |-  N  e.  NN
10 2nn 9877 . 2  |-  2  e.  NN
11 9nn0 9989 . 2  |-  9  e.  NN0
12 10nn0 9990 . . . 4  |-  10  e.  NN0
13 4nn0 9984 . . . 4  |-  4  e.  NN0
1412, 13deccl 10138 . . 3  |- ; 10 4  e.  NN0
1514nn0zi 10048 . 2  |- ; 10 4  e.  ZZ
16 1nn0 9981 . . . 4  |-  1  e.  NN0
173, 16deccl 10138 . . 3  |- ; 5 1  e.  NN0
1817, 2deccl 10138 . 2  |- ;; 5 1 2  e.  NN0
19 8nn0 9988 . . . . 5  |-  8  e.  NN0
2016, 19deccl 10138 . . . 4  |- ; 1 8  e.  NN0
21 3nn0 9983 . . . 4  |-  3  e.  NN0
2220, 21deccl 10138 . . 3  |- ;; 1 8 3  e.  NN0
2322, 2deccl 10138 . 2  |- ;;; 1 8 3 2  e.  NN0
24 8p1e9 9853 . . . 4  |-  ( 8  +  1 )  =  9
25 6nn0 9986 . . . . 5  |-  6  e.  NN0
26 2exp8 13102 . . . . 5  |-  ( 2 ^ 8 )  = ;; 2 5 6
27 eqid 2283 . . . . . 6  |- ; 2 5  = ; 2 5
2816dec0h 10140 . . . . . 6  |-  1  = ; 0 1
29 2t2e4 9871 . . . . . . . 8  |-  ( 2  x.  2 )  =  4
30 ax-1cn 8795 . . . . . . . . 9  |-  1  e.  CC
3130addid2i 9000 . . . . . . . 8  |-  ( 0  +  1 )  =  1
3229, 31oveq12i 5870 . . . . . . 7  |-  ( ( 2  x.  2 )  +  ( 0  +  1 ) )  =  ( 4  +  1 )
33 4p1e5 9849 . . . . . . 7  |-  ( 4  +  1 )  =  5
3432, 33eqtri 2303 . . . . . 6  |-  ( ( 2  x.  2 )  +  ( 0  +  1 ) )  =  5
35 5t2e10 9875 . . . . . . . 8  |-  ( 5  x.  2 )  =  10
36 dec10 10154 . . . . . . . 8  |-  10  = ; 1 0
3735, 36eqtri 2303 . . . . . . 7  |-  ( 5  x.  2 )  = ; 1
0
3816, 5, 31, 37decsuc 10147 . . . . . 6  |-  ( ( 5  x.  2 )  +  1 )  = ; 1
1
392, 3, 5, 16, 27, 28, 2, 16, 16, 34, 38decmac 10163 . . . . 5  |-  ( (; 2
5  x.  2 )  +  1 )  = ; 5
1
40 6t2e12 10201 . . . . 5  |-  ( 6  x.  2 )  = ; 1
2
412, 4, 25, 26, 2, 16, 39, 40decmul1c 10171 . . . 4  |-  ( ( 2 ^ 8 )  x.  2 )  = ;; 5 1 2
422, 19, 24, 41numexpp1 13093 . . 3  |-  ( 2 ^ 9 )  = ;; 5 1 2
4342oveq1i 5868 . 2  |-  ( ( 2 ^ 9 )  mod  N )  =  (;; 5 1 2  mod  N )
44 9nn 9884 . . . 4  |-  9  e.  NN
4544nncni 9756 . . 3  |-  9  e.  CC
46 2cn 9816 . . 3  |-  2  e.  CC
47 9t2e18 10219 . . 3  |-  ( 9  x.  2 )  = ; 1
8
4845, 46, 47mulcomli 8844 . 2  |-  ( 2  x.  9 )  = ; 1
8
49 eqid 2283 . . . 4  |- ;;; 1 8 3 2  = ;;; 1 8 3 2
5021, 16deccl 10138 . . . 4  |- ; 3 1  e.  NN0
512, 16deccl 10138 . . . . 5  |- ; 2 1  e.  NN0
52 eqid 2283 . . . . 5  |- ;; 2 5 0  = ;; 2 5 0
53 eqid 2283 . . . . . 6  |- ;; 1 8 3  = ;; 1 8 3
54 eqid 2283 . . . . . 6  |- ; 3 1  = ; 3 1
55 eqid 2283 . . . . . . 7  |- ; 1 8  = ; 1 8
56 1p1e2 9840 . . . . . . 7  |-  ( 1  +  1 )  =  2
57 8p3e11 10180 . . . . . . 7  |-  ( 8  +  3 )  = ; 1
1
5816, 19, 21, 55, 56, 16, 57decaddci 10169 . . . . . 6  |-  (; 1 8  +  3 )  = ; 2 1
59 3p1e4 9848 . . . . . 6  |-  ( 3  +  1 )  =  4
6020, 21, 21, 16, 53, 54, 58, 59decadd 10165 . . . . 5  |-  (;; 1 8 3  + ; 3 1 )  = ;; 2 1 4
6151nn0cni 9977 . . . . . . 7  |- ; 2 1  e.  CC
6261addid1i 8999 . . . . . 6  |-  (; 2 1  +  0 )  = ; 2 1
633, 2deccl 10138 . . . . . 6  |- ; 5 2  e.  NN0
64 eqid 2283 . . . . . . 7  |- ; 10 4  = ; 10 4
652dec0h 10140 . . . . . . . 8  |-  2  = ; 0 2
66 eqid 2283 . . . . . . . 8  |- ; 5 2  = ; 5 2
67 5nn 9880 . . . . . . . . . 10  |-  5  e.  NN
6867nncni 9756 . . . . . . . . 9  |-  5  e.  CC
6968addid2i 9000 . . . . . . . 8  |-  ( 0  +  5 )  =  5
70 2p2e4 9842 . . . . . . . 8  |-  ( 2  +  2 )  =  4
715, 2, 3, 2, 65, 66, 69, 70decadd 10165 . . . . . . 7  |-  ( 2  + ; 5 2 )  = ; 5
4
72 5p1e6 9850 . . . . . . . . 9  |-  ( 5  +  1 )  =  6
7325dec0h 10140 . . . . . . . . 9  |-  6  = ; 0 6
7472, 73eqtri 2303 . . . . . . . 8  |-  ( 5  +  1 )  = ; 0
6
7546mulid2i 8840 . . . . . . . . . 10  |-  ( 1  x.  2 )  =  2
76 00id 8987 . . . . . . . . . 10  |-  ( 0  +  0 )  =  0
7775, 76oveq12i 5870 . . . . . . . . 9  |-  ( ( 1  x.  2 )  +  ( 0  +  0 ) )  =  ( 2  +  0 )
7846addid1i 8999 . . . . . . . . 9  |-  ( 2  +  0 )  =  2
7977, 78eqtri 2303 . . . . . . . 8  |-  ( ( 1  x.  2 )  +  ( 0  +  0 ) )  =  2
8046mul02i 9001 . . . . . . . . . 10  |-  ( 0  x.  2 )  =  0
8180oveq1i 5868 . . . . . . . . 9  |-  ( ( 0  x.  2 )  +  6 )  =  ( 0  +  6 )
82 6nn 9881 . . . . . . . . . . 11  |-  6  e.  NN
8382nncni 9756 . . . . . . . . . 10  |-  6  e.  CC
8483addid2i 9000 . . . . . . . . 9  |-  ( 0  +  6 )  =  6
8581, 84, 733eqtri 2307 . . . . . . . 8  |-  ( ( 0  x.  2 )  +  6 )  = ; 0
6
8616, 5, 5, 25, 36, 74, 2, 25, 5, 79, 85decmac 10163 . . . . . . 7  |-  ( ( 10  x.  2 )  +  ( 5  +  1 ) )  = ; 2
6
87 4t2e8 9874 . . . . . . . . 9  |-  ( 4  x.  2 )  =  8
8887oveq1i 5868 . . . . . . . 8  |-  ( ( 4  x.  2 )  +  4 )  =  ( 8  +  4 )
89 8p4e12 10181 . . . . . . . 8  |-  ( 8  +  4 )  = ; 1
2
9088, 89eqtri 2303 . . . . . . 7  |-  ( ( 4  x.  2 )  +  4 )  = ; 1
2
9112, 13, 3, 13, 64, 71, 2, 2, 16, 86, 90decmac 10163 . . . . . 6  |-  ( (; 10 4  x.  2 )  +  ( 2  + ; 5
2 ) )  = ;; 2 6 2
9246addid2i 9000 . . . . . . . . 9  |-  ( 0  +  2 )  =  2
9392, 65eqtri 2303 . . . . . . . 8  |-  ( 0  +  2 )  = ; 0
2
9468mulid2i 8840 . . . . . . . . . 10  |-  ( 1  x.  5 )  =  5
9594, 76oveq12i 5870 . . . . . . . . 9  |-  ( ( 1  x.  5 )  +  ( 0  +  0 ) )  =  ( 5  +  0 )
9668addid1i 8999 . . . . . . . . 9  |-  ( 5  +  0 )  =  5
9795, 96eqtri 2303 . . . . . . . 8  |-  ( ( 1  x.  5 )  +  ( 0  +  0 ) )  =  5
9868mul02i 9001 . . . . . . . . . 10  |-  ( 0  x.  5 )  =  0
9998oveq1i 5868 . . . . . . . . 9  |-  ( ( 0  x.  5 )  +  2 )  =  ( 0  +  2 )
10099, 92, 653eqtri 2307 . . . . . . . 8  |-  ( ( 0  x.  5 )  +  2 )  = ; 0
2
10116, 5, 5, 2, 36, 93, 3, 2, 5, 97, 100decmac 10163 . . . . . . 7  |-  ( ( 10  x.  5 )  +  ( 0  +  2 ) )  = ; 5
2
102 4cn 9820 . . . . . . . . 9  |-  4  e.  CC
103 5t4e20 10199 . . . . . . . . 9  |-  ( 5  x.  4 )  = ; 2
0
10468, 102, 103mulcomli 8844 . . . . . . . 8  |-  ( 4  x.  5 )  = ; 2
0
1052, 5, 31, 104decsuc 10147 . . . . . . 7  |-  ( ( 4  x.  5 )  +  1 )  = ; 2
1
10612, 13, 5, 16, 64, 28, 3, 16, 2, 101, 105decmac 10163 . . . . . 6  |-  ( (; 10 4  x.  5 )  +  1 )  = ;; 5 2 1
1072, 3, 2, 16, 27, 62, 14, 16, 63, 91, 106decma2c 10164 . . . . 5  |-  ( (; 10 4  x. ; 2 5 )  +  (; 2 1  +  0 ) )  = ;;; 2 6 2 1
10814nn0cni 9977 . . . . . . . 8  |- ; 10 4  e.  CC
109108mul01i 9002 . . . . . . 7  |-  (; 10 4  x.  0 )  =  0
110109oveq1i 5868 . . . . . 6  |-  ( (; 10 4  x.  0 )  +  4 )  =  ( 0  +  4 )
111102addid2i 9000 . . . . . 6  |-  ( 0  +  4 )  =  4
11213dec0h 10140 . . . . . 6  |-  4  = ; 0 4
113110, 111, 1123eqtri 2307 . . . . 5  |-  ( (; 10 4  x.  0 )  +  4 )  = ; 0
4
1144, 5, 51, 13, 52, 60, 14, 13, 5, 107, 113decma2c 10164 . . . 4  |-  ( (; 10 4  x. ;; 2
5 0 )  +  (;; 1 8 3  + ; 3 1 ) )  = ;;;; 2 6 2 1 4
11531, 28eqtri 2303 . . . . . 6  |-  ( 0  +  1 )  = ; 0
1
116 3cn 9818 . . . . . . . . 9  |-  3  e.  CC
117116mulid2i 8840 . . . . . . . 8  |-  ( 1  x.  3 )  =  3
118117, 76oveq12i 5870 . . . . . . 7  |-  ( ( 1  x.  3 )  +  ( 0  +  0 ) )  =  ( 3  +  0 )
119116addid1i 8999 . . . . . . 7  |-  ( 3  +  0 )  =  3
120118, 119eqtri 2303 . . . . . 6  |-  ( ( 1  x.  3 )  +  ( 0  +  0 ) )  =  3
121116mul02i 9001 . . . . . . . 8  |-  ( 0  x.  3 )  =  0
122121oveq1i 5868 . . . . . . 7  |-  ( ( 0  x.  3 )  +  1 )  =  ( 0  +  1 )
123122, 31, 283eqtri 2307 . . . . . 6  |-  ( ( 0  x.  3 )  +  1 )  = ; 0
1
12416, 5, 5, 16, 36, 115, 21, 16, 5, 120, 123decmac 10163 . . . . 5  |-  ( ( 10  x.  3 )  +  ( 0  +  1 ) )  = ; 3
1
125 4t3e12 10196 . . . . . 6  |-  ( 4  x.  3 )  = ; 1
2
12616, 2, 2, 125, 70decaddi 10168 . . . . 5  |-  ( ( 4  x.  3 )  +  2 )  = ; 1
4
12712, 13, 5, 2, 64, 65, 21, 13, 16, 124, 126decmac 10163 . . . 4  |-  ( (; 10 4  x.  3 )  +  2 )  = ;; 3 1 4
1286, 21, 22, 2, 1, 49, 14, 13, 50, 114, 127decma2c 10164 . . 3  |-  ( (; 10 4  x.  N )  + ;;; 1 8 3 2 )  = ;;;;; 2 6 2 1 4 4
129 eqid 2283 . . . 4  |- ;; 5 1 2  = ;; 5 1 2
13012, 2deccl 10138 . . . 4  |- ; 10 2  e.  NN0
131 eqid 2283 . . . . 5  |- ; 5 1  = ; 5 1
132 eqid 2283 . . . . 5  |- ; 10 2  = ; 10 2
13368, 30, 72addcomli 9004 . . . . . . 7  |-  ( 1  +  5 )  =  6
13416, 5, 3, 16, 36, 131, 133, 31decadd 10165 . . . . . 6  |-  ( 10  + ; 5 1 )  = ; 6
1
135 7nn0 9987 . . . . . . 7  |-  7  e.  NN0
136 6p1e7 9851 . . . . . . . 8  |-  ( 6  +  1 )  =  7
137135dec0h 10140 . . . . . . . 8  |-  7  = ; 0 7
138136, 137eqtri 2303 . . . . . . 7  |-  ( 6  +  1 )  = ; 0
7
13931oveq2i 5869 . . . . . . . 8  |-  ( ( 5  x.  5 )  +  ( 0  +  1 ) )  =  ( ( 5  x.  5 )  +  1 )
140 5t5e25 10200 . . . . . . . . 9  |-  ( 5  x.  5 )  = ; 2
5
1412, 3, 72, 140decsuc 10147 . . . . . . . 8  |-  ( ( 5  x.  5 )  +  1 )  = ; 2
6
142139, 141eqtri 2303 . . . . . . 7  |-  ( ( 5  x.  5 )  +  ( 0  +  1 ) )  = ; 2
6
14394oveq1i 5868 . . . . . . . 8  |-  ( ( 1  x.  5 )  +  7 )  =  ( 5  +  7 )
144 7nn 9882 . . . . . . . . . 10  |-  7  e.  NN
145144nncni 9756 . . . . . . . . 9  |-  7  e.  CC
146 7p5e12 10177 . . . . . . . . 9  |-  ( 7  +  5 )  = ; 1
2
147145, 68, 146addcomli 9004 . . . . . . . 8  |-  ( 5  +  7 )  = ; 1
2
148143, 147eqtri 2303 . . . . . . 7  |-  ( ( 1  x.  5 )  +  7 )  = ; 1
2
1493, 16, 5, 135, 131, 138, 3, 2, 16, 142, 148decmac 10163 . . . . . 6  |-  ( (; 5
1  x.  5 )  +  ( 6  +  1 ) )  = ;; 2 6 2
15068, 46, 35mulcomli 8844 . . . . . . . 8  |-  ( 2  x.  5 )  =  10
151150, 36eqtri 2303 . . . . . . 7  |-  ( 2  x.  5 )  = ; 1
0
15216, 5, 31, 151decsuc 10147 . . . . . 6  |-  ( ( 2  x.  5 )  +  1 )  = ; 1
1
15317, 2, 25, 16, 129, 134, 3, 16, 16, 149, 152decmac 10163 . . . . 5  |-  ( (;; 5 1 2  x.  5 )  +  ( 10  + ; 5 1 ) )  = ;;; 2 6 2 1
1545dec0h 10140 . . . . . . . 8  |-  0  = ; 0 0
15576, 154eqtri 2303 . . . . . . 7  |-  ( 0  +  0 )  = ; 0
0
15668mulid1i 8839 . . . . . . . . 9  |-  ( 5  x.  1 )  =  5
157156, 76oveq12i 5870 . . . . . . . 8  |-  ( ( 5  x.  1 )  +  ( 0  +  0 ) )  =  ( 5  +  0 )
158157, 96eqtri 2303 . . . . . . 7  |-  ( ( 5  x.  1 )  +  ( 0  +  0 ) )  =  5
15930mulid1i 8839 . . . . . . . . 9  |-  ( 1  x.  1 )  =  1
160159oveq1i 5868 . . . . . . . 8  |-  ( ( 1  x.  1 )  +  0 )  =  ( 1  +  0 )
16130addid1i 8999 . . . . . . . 8  |-  ( 1  +  0 )  =  1
162160, 161, 283eqtri 2307 . . . . . . 7  |-  ( ( 1  x.  1 )  +  0 )  = ; 0
1
1633, 16, 5, 5, 131, 155, 16, 16, 5, 158, 162decmac 10163 . . . . . 6  |-  ( (; 5
1  x.  1 )  +  ( 0  +  0 ) )  = ; 5
1
16446mulid1i 8839 . . . . . . . 8  |-  ( 2  x.  1 )  =  2
165164oveq1i 5868 . . . . . . 7  |-  ( ( 2  x.  1 )  +  2 )  =  ( 2  +  2 )
166165, 70, 1123eqtri 2307 . . . . . 6  |-  ( ( 2  x.  1 )  +  2 )  = ; 0
4
16717, 2, 5, 2, 129, 65, 16, 13, 5, 163, 166decmac 10163 . . . . 5  |-  ( (;; 5 1 2  x.  1 )  +  2 )  = ;; 5 1 4
1683, 16, 12, 2, 131, 132, 18, 13, 17, 153, 167decma2c 10164 . . . 4  |-  ( (;; 5 1 2  x. ; 5
1 )  + ; 10 2 )  = ;;;; 2 6 2 1 4
16935oveq1i 5868 . . . . . . . . 9  |-  ( ( 5  x.  2 )  +  0 )  =  ( 10  +  0 )
170 10nn 9885 . . . . . . . . . . 11  |-  10  e.  NN
171170nncni 9756 . . . . . . . . . 10  |-  10  e.  CC
172171addid1i 8999 . . . . . . . . 9  |-  ( 10  +  0 )  =  10
173169, 172eqtri 2303 . . . . . . . 8  |-  ( ( 5  x.  2 )  +  0 )  =  10
17475, 65eqtri 2303 . . . . . . . 8  |-  ( 1  x.  2 )  = ; 0
2
1752, 3, 16, 131, 2, 5, 173, 174decmul1c 10171 . . . . . . 7  |-  (; 5 1  x.  2 )  = ; 10 2
176175oveq1i 5868 . . . . . 6  |-  ( (; 5
1  x.  2 )  +  0 )  =  (; 10 2  +  0
)
177130nn0cni 9977 . . . . . . 7  |- ; 10 2  e.  CC
178177addid1i 8999 . . . . . 6  |-  (; 10 2  +  0 )  = ; 10 2
179176, 178eqtri 2303 . . . . 5  |-  ( (; 5
1  x.  2 )  +  0 )  = ; 10 2
18029, 112eqtri 2303 . . . . 5  |-  ( 2  x.  2 )  = ; 0
4
1812, 17, 2, 129, 13, 5, 179, 180decmul1c 10171 . . . 4  |-  (;; 5 1 2  x.  2 )  = ;; 10 2 4
18218, 17, 2, 129, 13, 130, 168, 181decmul2c 10172 . . 3  |-  (;; 5 1 2  x. ;; 5 1 2 )  = ;;;;; 2 6 2 1 4 4
183128, 182eqtr4i 2306 . 2  |-  ( (; 10 4  x.  N )  + ;;; 1 8 3 2 )  =  (;; 5 1 2  x. ;; 5 1 2 )
1849, 10, 11, 15, 18, 23, 43, 48, 183mod2xi 13084 1  |-  ( ( 2 ^; 1 8 )  mod 
N )  =  (;;; 1 8 3 2  mod 
N )
Colors of variables: wff set class
Syntax hints:    = wceq 1623  (class class class)co 5858   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742   NNcn 9746   2c2 9795   3c3 9796   4c4 9797   5c5 9798   6c6 9799   7c7 9800   8c8 9801   9c9 9802   10c10 9803  ;cdc 10124    mod cmo 10973   ^cexp 11104
This theorem is referenced by:  2503lem2  13136  2503lem3  13137
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-rp 10355  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105
  Copyright terms: Public domain W3C validator