MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2albiim Structured version   Unicode version

Theorem 2albiim 1622
Description: Split a biconditional and distribute 2 quantifiers. (Contributed by NM, 3-Feb-2005.)
Assertion
Ref Expression
2albiim  |-  ( A. x A. y ( ph  <->  ps )  <->  ( A. x A. y ( ph  ->  ps )  /\  A. x A. y ( ps  ->  ph ) ) )

Proof of Theorem 2albiim
StepHypRef Expression
1 albiim 1621 . . 3  |-  ( A. y ( ph  <->  ps )  <->  ( A. y ( ph  ->  ps )  /\  A. y ( ps  ->  ph ) ) )
21albii 1575 . 2  |-  ( A. x A. y ( ph  <->  ps )  <->  A. x ( A. y ( ph  ->  ps )  /\  A. y
( ps  ->  ph )
) )
3 19.26 1603 . 2  |-  ( A. x ( A. y
( ph  ->  ps )  /\  A. y ( ps 
->  ph ) )  <->  ( A. x A. y ( ph  ->  ps )  /\  A. x A. y ( ps 
->  ph ) ) )
42, 3bitri 241 1  |-  ( A. x A. y ( ph  <->  ps )  <->  ( A. x A. y ( ph  ->  ps )  /\  A. x A. y ( ps  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549
This theorem is referenced by:  sbnf2  2184  2eu6  2366  eqopab2b  4484  eqrel  4965  eqrelrel  4977  eqoprab2b  6132  pm14.123a  27602  sbnf2NEW7  29608
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566
This theorem depends on definitions:  df-bi 178  df-an 361
  Copyright terms: Public domain W3C validator