Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2at0mat0 Unicode version

Theorem 2at0mat0 30019
Description: Special case of 2atmat0 30020 where one atom could be zero. (Contributed by NM, 30-May-2013.)
Hypotheses
Ref Expression
2atmatz.j  |-  .\/  =  ( join `  K )
2atmatz.m  |-  ./\  =  ( meet `  K )
2atmatz.z  |-  .0.  =  ( 0. `  K )
2atmatz.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
2at0mat0  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  ->  ( (
( P  .\/  Q
)  ./\  ( R  .\/  S ) )  e.  A  \/  ( ( P  .\/  Q ) 
./\  ( R  .\/  S ) )  =  .0.  ) )

Proof of Theorem 2at0mat0
StepHypRef Expression
1 simpll 731 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  /\  S  e.  A )  ->  ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A ) )
2 simplr1 999 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  /\  S  e.  A )  ->  R  e.  A )
3 simpr 448 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  /\  S  e.  A )  ->  S  e.  A )
4 simplr3 1001 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  /\  S  e.  A )  ->  ( P  .\/  Q )  =/=  ( R  .\/  S
) )
5 simpl1 960 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  K  e.  HL )
6 hlol 29856 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  OL )
75, 6syl 16 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  K  e.  OL )
8 simpr1 963 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  R  e.  A )
9 simpr2 964 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  S  e.  A )
10 eqid 2412 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
11 2atmatz.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
12 2atmatz.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
1310, 11, 12hlatjcl 29861 . . . . . . . 8  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  ( R  .\/  S
)  e.  ( Base `  K ) )
145, 8, 9, 13syl3anc 1184 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  ( R  .\/  S )  e.  (
Base `  K )
)
15 simpl3 962 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  Q  e.  A )
16 2atmatz.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
17 2atmatz.z . . . . . . . 8  |-  .0.  =  ( 0. `  K )
1810, 16, 17, 12meetat2 29792 . . . . . . 7  |-  ( ( K  e.  OL  /\  ( R  .\/  S )  e.  ( Base `  K
)  /\  Q  e.  A )  ->  (
( ( R  .\/  S )  ./\  Q )  e.  A  \/  (
( R  .\/  S
)  ./\  Q )  =  .0.  ) )
197, 14, 15, 18syl3anc 1184 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  ( (
( R  .\/  S
)  ./\  Q )  e.  A  \/  (
( R  .\/  S
)  ./\  Q )  =  .0.  ) )
2019adantr 452 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  P  =  Q )  ->  ( ( ( R 
.\/  S )  ./\  Q )  e.  A  \/  ( ( R  .\/  S )  ./\  Q )  =  .0.  ) )
21 oveq1 6055 . . . . . . . . . 10  |-  ( P  =  Q  ->  ( P  .\/  Q )  =  ( Q  .\/  Q
) )
2211, 12hlatjidm 29863 . . . . . . . . . . 11  |-  ( ( K  e.  HL  /\  Q  e.  A )  ->  ( Q  .\/  Q
)  =  Q )
235, 15, 22syl2anc 643 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  ( Q  .\/  Q )  =  Q )
2421, 23sylan9eqr 2466 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  P  =  Q )  ->  ( P  .\/  Q
)  =  Q )
2524oveq1d 6063 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  P  =  Q )  ->  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =  ( Q  ./\  ( R  .\/  S ) ) )
26 hllat 29858 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  Lat )
275, 26syl 16 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  K  e.  Lat )
2810, 12atbase 29784 . . . . . . . . . . 11  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
2915, 28syl 16 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  Q  e.  ( Base `  K )
)
3010, 16latmcom 14467 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  Q  e.  ( Base `  K )  /\  ( R  .\/  S )  e.  ( Base `  K
) )  ->  ( Q  ./\  ( R  .\/  S ) )  =  ( ( R  .\/  S
)  ./\  Q )
)
3127, 29, 14, 30syl3anc 1184 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  ( Q  ./\  ( R  .\/  S
) )  =  ( ( R  .\/  S
)  ./\  Q )
)
3231adantr 452 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  P  =  Q )  ->  ( Q  ./\  ( R  .\/  S ) )  =  ( ( R 
.\/  S )  ./\  Q ) )
3325, 32eqtrd 2444 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  P  =  Q )  ->  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =  ( ( R  .\/  S )  ./\  Q )
)
3433eleq1d 2478 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  P  =  Q )  ->  ( ( ( P 
.\/  Q )  ./\  ( R  .\/  S ) )  e.  A  <->  ( ( R  .\/  S )  ./\  Q )  e.  A ) )
3533eqeq1d 2420 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  P  =  Q )  ->  ( ( ( P 
.\/  Q )  ./\  ( R  .\/  S ) )  =  .0.  <->  ( ( R  .\/  S )  ./\  Q )  =  .0.  )
)
3634, 35orbi12d 691 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  P  =  Q )  ->  ( ( ( ( P  .\/  Q ) 
./\  ( R  .\/  S ) )  e.  A  \/  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =  .0.  )  <->  ( (
( R  .\/  S
)  ./\  Q )  e.  A  \/  (
( R  .\/  S
)  ./\  Q )  =  .0.  ) ) )
3720, 36mpbird 224 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  P  =  Q )  ->  ( ( ( P 
.\/  Q )  ./\  ( R  .\/  S ) )  e.  A  \/  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =  .0.  ) )
3810, 11, 12hlatjcl 29861 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
3938adantr 452 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  ( P  .\/  Q )  e.  (
Base `  K )
)
4010, 16, 17, 12meetat2 29792 . . . . . . . . 9  |-  ( ( K  e.  OL  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  S  e.  A )  ->  (
( ( P  .\/  Q )  ./\  S )  e.  A  \/  (
( P  .\/  Q
)  ./\  S )  =  .0.  ) )
417, 39, 9, 40syl3anc 1184 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  ( (
( P  .\/  Q
)  ./\  S )  e.  A  \/  (
( P  .\/  Q
)  ./\  S )  =  .0.  ) )
4241adantr 452 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  R  =  S )  ->  ( ( ( P 
.\/  Q )  ./\  S )  e.  A  \/  ( ( P  .\/  Q )  ./\  S )  =  .0.  ) )
43 oveq1 6055 . . . . . . . . . . 11  |-  ( R  =  S  ->  ( R  .\/  S )  =  ( S  .\/  S
) )
4411, 12hlatjidm 29863 . . . . . . . . . . . 12  |-  ( ( K  e.  HL  /\  S  e.  A )  ->  ( S  .\/  S
)  =  S )
455, 9, 44syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  ( S  .\/  S )  =  S )
4643, 45sylan9eqr 2466 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  R  =  S )  ->  ( R  .\/  S
)  =  S )
4746oveq2d 6064 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  R  =  S )  ->  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =  ( ( P  .\/  Q )  ./\  S )
)
4847eleq1d 2478 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  R  =  S )  ->  ( ( ( P 
.\/  Q )  ./\  ( R  .\/  S ) )  e.  A  <->  ( ( P  .\/  Q )  ./\  S )  e.  A ) )
4947eqeq1d 2420 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  R  =  S )  ->  ( ( ( P 
.\/  Q )  ./\  ( R  .\/  S ) )  =  .0.  <->  ( ( P  .\/  Q )  ./\  S )  =  .0.  )
)
5048, 49orbi12d 691 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  R  =  S )  ->  ( ( ( ( P  .\/  Q ) 
./\  ( R  .\/  S ) )  e.  A  \/  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =  .0.  )  <->  ( (
( P  .\/  Q
)  ./\  S )  e.  A  \/  (
( P  .\/  Q
)  ./\  S )  =  .0.  ) ) )
5142, 50mpbird 224 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  R  =  S )  ->  ( ( ( P 
.\/  Q )  ./\  ( R  .\/  S ) )  e.  A  \/  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =  .0.  ) )
5251adantlr 696 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  P  =/=  Q )  /\  R  =  S )  ->  ( ( ( P 
.\/  Q )  ./\  ( R  .\/  S ) )  e.  A  \/  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =  .0.  ) )
53 df-ne 2577 . . . . . . . 8  |-  ( ( ( P  .\/  Q
)  ./\  ( R  .\/  S ) )  =/= 
.0. 
<->  -.  ( ( P 
.\/  Q )  ./\  ( R  .\/  S ) )  =  .0.  )
54 simpll1 996 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  ( P  =/=  Q  /\  R  =/=  S  /\  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =/= 
.0.  ) )  ->  K  e.  HL )
55 simpll2 997 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  ( P  =/=  Q  /\  R  =/=  S  /\  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =/= 
.0.  ) )  ->  P  e.  A )
56 simpll3 998 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  ( P  =/=  Q  /\  R  =/=  S  /\  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =/= 
.0.  ) )  ->  Q  e.  A )
57 simpr1 963 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  ( P  =/=  Q  /\  R  =/=  S  /\  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =/= 
.0.  ) )  ->  P  =/=  Q )
58 eqid 2412 . . . . . . . . . . . . 13  |-  ( LLines `  K )  =  (
LLines `  K )
5911, 12, 58llni2 30006 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  P  =/=  Q
)  ->  ( P  .\/  Q )  e.  (
LLines `  K ) )
6054, 55, 56, 57, 59syl31anc 1187 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  ( P  =/=  Q  /\  R  =/=  S  /\  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =/= 
.0.  ) )  -> 
( P  .\/  Q
)  e.  ( LLines `  K ) )
61 simplr1 999 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  ( P  =/=  Q  /\  R  =/=  S  /\  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =/= 
.0.  ) )  ->  R  e.  A )
62 simplr2 1000 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  ( P  =/=  Q  /\  R  =/=  S  /\  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =/= 
.0.  ) )  ->  S  e.  A )
63 simpr2 964 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  ( P  =/=  Q  /\  R  =/=  S  /\  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =/= 
.0.  ) )  ->  R  =/=  S )
6411, 12, 58llni2 30006 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  /\  R  =/=  S
)  ->  ( R  .\/  S )  e.  (
LLines `  K ) )
6554, 61, 62, 63, 64syl31anc 1187 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  ( P  =/=  Q  /\  R  =/=  S  /\  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =/= 
.0.  ) )  -> 
( R  .\/  S
)  e.  ( LLines `  K ) )
66 simplr3 1001 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  ( P  =/=  Q  /\  R  =/=  S  /\  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =/= 
.0.  ) )  -> 
( P  .\/  Q
)  =/=  ( R 
.\/  S ) )
67 simpr3 965 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  ( P  =/=  Q  /\  R  =/=  S  /\  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =/= 
.0.  ) )  -> 
( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =/= 
.0.  )
6816, 17, 12, 582llnmat 30018 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  ( P  .\/  Q
)  e.  ( LLines `  K )  /\  ( R  .\/  S )  e.  ( LLines `  K )
)  /\  ( ( P  .\/  Q )  =/=  ( R  .\/  S
)  /\  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =/=  .0.  )
)  ->  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  e.  A )
6954, 60, 65, 66, 67, 68syl32anc 1192 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  ( P  =/=  Q  /\  R  =/=  S  /\  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =/= 
.0.  ) )  -> 
( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  e.  A )
70693exp2 1171 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  ( P  =/=  Q  ->  ( R  =/=  S  ->  ( (
( P  .\/  Q
)  ./\  ( R  .\/  S ) )  =/= 
.0.  ->  ( ( P 
.\/  Q )  ./\  ( R  .\/  S ) )  e.  A ) ) ) )
7170imp31 422 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  P  =/=  Q )  /\  R  =/=  S )  -> 
( ( ( P 
.\/  Q )  ./\  ( R  .\/  S ) )  =/=  .0.  ->  ( ( P  .\/  Q
)  ./\  ( R  .\/  S ) )  e.  A ) )
7253, 71syl5bir 210 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  P  =/=  Q )  /\  R  =/=  S )  -> 
( -.  ( ( P  .\/  Q ) 
./\  ( R  .\/  S ) )  =  .0. 
->  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  e.  A ) )
7372orrd 368 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  P  =/=  Q )  /\  R  =/=  S )  -> 
( ( ( P 
.\/  Q )  ./\  ( R  .\/  S ) )  =  .0.  \/  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  e.  A ) )
7473orcomd 378 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  P  =/=  Q )  /\  R  =/=  S )  -> 
( ( ( P 
.\/  Q )  ./\  ( R  .\/  S ) )  e.  A  \/  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =  .0.  ) )
7552, 74pm2.61dane 2653 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q )  =/=  ( R  .\/  S ) ) )  /\  P  =/=  Q )  -> 
( ( ( P 
.\/  Q )  ./\  ( R  .\/  S ) )  e.  A  \/  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =  .0.  ) )
7637, 75pm2.61dane 2653 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A  /\  ( P  .\/  Q
)  =/=  ( R 
.\/  S ) ) )  ->  ( (
( P  .\/  Q
)  ./\  ( R  .\/  S ) )  e.  A  \/  ( ( P  .\/  Q ) 
./\  ( R  .\/  S ) )  =  .0.  ) )
771, 2, 3, 4, 76syl13anc 1186 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  /\  S  e.  A )  ->  (
( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  e.  A  \/  ( ( P  .\/  Q ) 
./\  ( R  .\/  S ) )  =  .0.  ) )
78 simpl1 960 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  ->  K  e.  HL )
7978, 6syl 16 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  ->  K  e.  OL )
8038adantr 452 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  ->  ( P  .\/  Q )  e.  (
Base `  K )
)
81 simpr1 963 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  ->  R  e.  A )
8210, 16, 17, 12meetat2 29792 . . . . 5  |-  ( ( K  e.  OL  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  R  e.  A )  ->  (
( ( P  .\/  Q )  ./\  R )  e.  A  \/  (
( P  .\/  Q
)  ./\  R )  =  .0.  ) )
8379, 80, 81, 82syl3anc 1184 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  ->  ( (
( P  .\/  Q
)  ./\  R )  e.  A  \/  (
( P  .\/  Q
)  ./\  R )  =  .0.  ) )
8483adantr 452 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  /\  S  =  .0.  )  ->  (
( ( P  .\/  Q )  ./\  R )  e.  A  \/  (
( P  .\/  Q
)  ./\  R )  =  .0.  ) )
85 oveq2 6056 . . . . . . 7  |-  ( S  =  .0.  ->  ( R  .\/  S )  =  ( R  .\/  .0.  ) )
8610, 12atbase 29784 . . . . . . . . 9  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
8781, 86syl 16 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  ->  R  e.  ( Base `  K )
)
8810, 11, 17olj01 29720 . . . . . . . 8  |-  ( ( K  e.  OL  /\  R  e.  ( Base `  K ) )  -> 
( R  .\/  .0.  )  =  R )
8979, 87, 88syl2anc 643 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  ->  ( R  .\/  .0.  )  =  R )
9085, 89sylan9eqr 2466 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  /\  S  =  .0.  )  ->  ( R  .\/  S )  =  R )
9190oveq2d 6064 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  /\  S  =  .0.  )  ->  (
( P  .\/  Q
)  ./\  ( R  .\/  S ) )  =  ( ( P  .\/  Q )  ./\  R )
)
9291eleq1d 2478 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  /\  S  =  .0.  )  ->  (
( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  e.  A  <->  ( ( P 
.\/  Q )  ./\  R )  e.  A ) )
9391eqeq1d 2420 . . . 4  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  /\  S  =  .0.  )  ->  (
( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =  .0.  <->  ( ( P 
.\/  Q )  ./\  R )  =  .0.  )
)
9492, 93orbi12d 691 . . 3  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  /\  S  =  .0.  )  ->  (
( ( ( P 
.\/  Q )  ./\  ( R  .\/  S ) )  e.  A  \/  ( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  =  .0.  )  <->  ( (
( P  .\/  Q
)  ./\  R )  e.  A  \/  (
( P  .\/  Q
)  ./\  R )  =  .0.  ) ) )
9584, 94mpbird 224 . 2  |-  ( ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  /\  S  =  .0.  )  ->  (
( ( P  .\/  Q )  ./\  ( R  .\/  S ) )  e.  A  \/  ( ( P  .\/  Q ) 
./\  ( R  .\/  S ) )  =  .0.  ) )
96 simpr2 964 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  ->  ( S  e.  A  \/  S  =  .0.  ) )
9777, 95, 96mpjaodan 762 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  ( S  e.  A  \/  S  =  .0.  )  /\  ( P  .\/  Q )  =/=  ( R 
.\/  S ) ) )  ->  ( (
( P  .\/  Q
)  ./\  ( R  .\/  S ) )  e.  A  \/  ( ( P  .\/  Q ) 
./\  ( R  .\/  S ) )  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2575   ` cfv 5421  (class class class)co 6048   Basecbs 13432   joincjn 14364   meetcmee 14365   0.cp0 14429   Latclat 14437   OLcol 29669   Atomscatm 29758   HLchlt 29845   LLinesclln 29985
This theorem is referenced by:  2atmat0  30020  cdlemg31b0a  31189
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-undef 6510  df-riota 6516  df-poset 14366  df-plt 14378  df-lub 14394  df-glb 14395  df-join 14396  df-meet 14397  df-p0 14431  df-lat 14438  df-clat 14500  df-oposet 29671  df-ol 29673  df-oml 29674  df-covers 29761  df-ats 29762  df-atl 29793  df-cvlat 29817  df-hlat 29846  df-llines 29992
  Copyright terms: Public domain W3C validator