MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2basgen Unicode version

Theorem 2basgen 16728
Description: Conditions that determine the equality of two generated topologies. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
2basgen  |-  ( ( B  C_  C  /\  C  C_  ( topGen `  B
) )  ->  ( topGen `
 B )  =  ( topGen `  C )
)

Proof of Theorem 2basgen
StepHypRef Expression
1 fvex 5539 . . . . 5  |-  ( topGen `  B )  e.  _V
21ssex 4158 . . . 4  |-  ( C 
C_  ( topGen `  B
)  ->  C  e.  _V )
32adantl 452 . . 3  |-  ( ( B  C_  C  /\  C  C_  ( topGen `  B
) )  ->  C  e.  _V )
4 simpl 443 . . 3  |-  ( ( B  C_  C  /\  C  C_  ( topGen `  B
) )  ->  B  C_  C )
5 tgss 16706 . . 3  |-  ( ( C  e.  _V  /\  B  C_  C )  -> 
( topGen `  B )  C_  ( topGen `  C )
)
63, 4, 5syl2anc 642 . 2  |-  ( ( B  C_  C  /\  C  C_  ( topGen `  B
) )  ->  ( topGen `
 B )  C_  ( topGen `  C )
)
7 simpr 447 . . 3  |-  ( ( B  C_  C  /\  C  C_  ( topGen `  B
) )  ->  C  C_  ( topGen `  B )
)
8 ssexg 4160 . . . . 5  |-  ( ( B  C_  C  /\  C  e.  _V )  ->  B  e.  _V )
92, 8sylan2 460 . . . 4  |-  ( ( B  C_  C  /\  C  C_  ( topGen `  B
) )  ->  B  e.  _V )
10 tgss3 16724 . . . 4  |-  ( ( C  e.  _V  /\  B  e.  _V )  ->  ( ( topGen `  C
)  C_  ( topGen `  B )  <->  C  C_  ( topGen `
 B ) ) )
113, 9, 10syl2anc 642 . . 3  |-  ( ( B  C_  C  /\  C  C_  ( topGen `  B
) )  ->  (
( topGen `  C )  C_  ( topGen `  B )  <->  C 
C_  ( topGen `  B
) ) )
127, 11mpbird 223 . 2  |-  ( ( B  C_  C  /\  C  C_  ( topGen `  B
) )  ->  ( topGen `
 C )  C_  ( topGen `  B )
)
136, 12eqssd 3196 1  |-  ( ( B  C_  C  /\  C  C_  ( topGen `  B
) )  ->  ( topGen `
 B )  =  ( topGen `  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788    C_ wss 3152   ` cfv 5255   topGenctg 13342
This theorem is referenced by:  leordtval2  16942  2ndcsb  17175  txbasval  17301  prdsxmslem2  18075  tgioo  18302  tgqioo  18306
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-topgen 13344
  Copyright terms: Public domain W3C validator