MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2elresin Structured version   Unicode version

Theorem 2elresin 5558
Description: Membership in two functions restricted by each other's domain. (Contributed by NM, 8-Aug-1994.)
Assertion
Ref Expression
2elresin  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  <->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )

Proof of Theorem 2elresin
StepHypRef Expression
1 fnop 5550 . . . . . . . 8  |-  ( ( F  Fn  A  /\  <.
x ,  y >.  e.  F )  ->  x  e.  A )
2 fnop 5550 . . . . . . . 8  |-  ( ( G  Fn  B  /\  <.
x ,  z >.  e.  G )  ->  x  e.  B )
31, 2anim12i 551 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  <. x ,  y
>.  e.  F )  /\  ( G  Fn  B  /\  <. x ,  z
>.  e.  G ) )  ->  ( x  e.  A  /\  x  e.  B ) )
43an4s 801 . . . . . 6  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G ) )  ->  ( x  e.  A  /\  x  e.  B ) )
5 elin 3532 . . . . . 6  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
64, 5sylibr 205 . . . . 5  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G ) )  ->  x  e.  ( A  i^i  B ) )
7 vex 2961 . . . . . . . 8  |-  y  e. 
_V
87opres 5157 . . . . . . 7  |-  ( x  e.  ( A  i^i  B )  ->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  <->  <. x ,  y >.  e.  F
) )
9 vex 2961 . . . . . . . 8  |-  z  e. 
_V
109opres 5157 . . . . . . 7  |-  ( x  e.  ( A  i^i  B )  ->  ( <. x ,  z >.  e.  ( G  |`  ( A  i^i  B ) )  <->  <. x ,  z >.  e.  G
) )
118, 10anbi12d 693 . . . . . 6  |-  ( x  e.  ( A  i^i  B )  ->  ( ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <. x ,  z
>.  e.  ( G  |`  ( A  i^i  B ) ) )  <->  ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G ) ) )
1211biimprd 216 . . . . 5  |-  ( x  e.  ( A  i^i  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
)  ->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )
136, 12syl 16 . . . 4  |-  ( ( ( F  Fn  A  /\  G  Fn  B
)  /\  ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G ) )  ->  ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
)  ->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )
1413ex 425 . . 3  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  -> 
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  -> 
( <. x ,  y
>.  e.  ( F  |`  ( A  i^i  B ) )  /\  <. x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) ) )
1514pm2.43d 47 . 2  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  -> 
( <. x ,  y
>.  e.  ( F  |`  ( A  i^i  B ) )  /\  <. x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )
16 resss 5172 . . . 4  |-  ( F  |`  ( A  i^i  B
) )  C_  F
1716sseli 3346 . . 3  |-  ( <.
x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  ->  <. x ,  y
>.  e.  F )
18 resss 5172 . . . 4  |-  ( G  |`  ( A  i^i  B
) )  C_  G
1918sseli 3346 . . 3  |-  ( <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) )  ->  <. x ,  z
>.  e.  G )
2017, 19anim12i 551 . 2  |-  ( (
<. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <. x ,  z
>.  e.  ( G  |`  ( A  i^i  B ) ) )  ->  ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )
2115, 20impbid1 196 1  |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  G )  <->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <.
x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    e. wcel 1726    i^i cin 3321   <.cop 3819    |` cres 4882    Fn wfn 5451
This theorem is referenced by:  tfrlem5  6643
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-br 4215  df-opab 4269  df-xp 4886  df-rel 4887  df-dm 4890  df-res 4892  df-fun 5458  df-fn 5459
  Copyright terms: Public domain W3C validator