MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2euswap Structured version   Unicode version

Theorem 2euswap 2359
Description: A condition allowing swap of uniqueness and existential quantifiers. (Contributed by NM, 10-Apr-2004.)
Assertion
Ref Expression
2euswap  |-  ( A. x E* y ph  ->  ( E! x E. y ph  ->  E! y E. x ph ) )

Proof of Theorem 2euswap
StepHypRef Expression
1 excomim 1758 . . . 4  |-  ( E. x E. y ph  ->  E. y E. x ph )
21a1i 11 . . 3  |-  ( A. x E* y ph  ->  ( E. x E. y ph  ->  E. y E. x ph ) )
3 2moswap 2358 . . 3  |-  ( A. x E* y ph  ->  ( E* x E. y ph  ->  E* y E. x ph ) )
42, 3anim12d 548 . 2  |-  ( A. x E* y ph  ->  ( ( E. x E. y ph  /\  E* x E. y ph )  -> 
( E. y E. x ph  /\  E* y E. x ph )
) )
5 eu5 2321 . 2  |-  ( E! x E. y ph  <->  ( E. x E. y ph  /\  E* x E. y ph ) )
6 eu5 2321 . 2  |-  ( E! y E. x ph  <->  ( E. y E. x ph  /\  E* y E. x ph ) )
74, 5, 63imtr4g 263 1  |-  ( A. x E* y ph  ->  ( E! x E. y ph  ->  E! y E. x ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360   A.wal 1550   E.wex 1551   E!weu 2283   E*wmo 2284
This theorem is referenced by:  euxfr2  3121  2reuswap  3138  2reuswap2  23980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288
  Copyright terms: Public domain W3C validator