MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2gencl Unicode version

Theorem 2gencl 2817
Description: Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996.)
Hypotheses
Ref Expression
2gencl.1  |-  ( C  e.  S  <->  E. x  e.  R  A  =  C )
2gencl.2  |-  ( D  e.  S  <->  E. y  e.  R  B  =  D )
2gencl.3  |-  ( A  =  C  ->  ( ph 
<->  ps ) )
2gencl.4  |-  ( B  =  D  ->  ( ps 
<->  ch ) )
2gencl.5  |-  ( ( x  e.  R  /\  y  e.  R )  ->  ph )
Assertion
Ref Expression
2gencl  |-  ( ( C  e.  S  /\  D  e.  S )  ->  ch )
Distinct variable groups:    x, y    x, R    ps, x    y, C    y, S    ch, y
Allowed substitution hints:    ph( x, y)    ps( y)    ch( x)    A( x, y)    B( x, y)    C( x)    D( x, y)    R( y)    S( x)

Proof of Theorem 2gencl
StepHypRef Expression
1 2gencl.2 . . . 4  |-  ( D  e.  S  <->  E. y  e.  R  B  =  D )
2 df-rex 2549 . . . 4  |-  ( E. y  e.  R  B  =  D  <->  E. y ( y  e.  R  /\  B  =  D ) )
31, 2bitri 240 . . 3  |-  ( D  e.  S  <->  E. y
( y  e.  R  /\  B  =  D
) )
4 2gencl.4 . . . 4  |-  ( B  =  D  ->  ( ps 
<->  ch ) )
54imbi2d 307 . . 3  |-  ( B  =  D  ->  (
( C  e.  S  ->  ps )  <->  ( C  e.  S  ->  ch )
) )
6 2gencl.1 . . . . . 6  |-  ( C  e.  S  <->  E. x  e.  R  A  =  C )
7 df-rex 2549 . . . . . 6  |-  ( E. x  e.  R  A  =  C  <->  E. x ( x  e.  R  /\  A  =  C ) )
86, 7bitri 240 . . . . 5  |-  ( C  e.  S  <->  E. x
( x  e.  R  /\  A  =  C
) )
9 2gencl.3 . . . . . 6  |-  ( A  =  C  ->  ( ph 
<->  ps ) )
109imbi2d 307 . . . . 5  |-  ( A  =  C  ->  (
( y  e.  R  ->  ph )  <->  ( y  e.  R  ->  ps )
) )
11 2gencl.5 . . . . . 6  |-  ( ( x  e.  R  /\  y  e.  R )  ->  ph )
1211ex 423 . . . . 5  |-  ( x  e.  R  ->  (
y  e.  R  ->  ph ) )
138, 10, 12gencl 2816 . . . 4  |-  ( C  e.  S  ->  (
y  e.  R  ->  ps ) )
1413com12 27 . . 3  |-  ( y  e.  R  ->  ( C  e.  S  ->  ps ) )
153, 5, 14gencl 2816 . 2  |-  ( D  e.  S  ->  ( C  e.  S  ->  ch ) )
1615impcom 419 1  |-  ( ( C  e.  S  /\  D  e.  S )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   E.wrex 2544
This theorem is referenced by:  3gencl  2818  axaddrcl  8774  axmulrcl  8776  axpre-lttri  8787  axpre-mulgt0  8790  uzin2  11828
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529  df-rex 2549
  Copyright terms: Public domain W3C validator