Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnneN Unicode version

Theorem 2llnneN 29903
Description: Condition implying that two intersecting lines are different. (Contributed by NM, 29-May-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2lnne.l  |-  .<_  =  ( le `  K )
2lnne.j  |-  .\/  =  ( join `  K )
2lnne.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
2llnneN  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )  -> 
( R  .\/  P
)  =/=  ( R 
.\/  Q ) )

Proof of Theorem 2llnneN
StepHypRef Expression
1 simp1 957 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )  ->  K  e.  HL )
2 simp21 990 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )  ->  P  e.  A )
3 simp23 992 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )  ->  R  e.  A )
4 simp21 990 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  ->  P  e.  A )
5 simp23 992 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  ->  R  e.  A )
6 simp22 991 . . . . . . . 8  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  ->  Q  e.  A )
74, 5, 63jca 1134 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  ->  ( P  e.  A  /\  R  e.  A  /\  Q  e.  A ) )
8 2lnne.l . . . . . . . 8  |-  .<_  =  ( le `  K )
9 2lnne.j . . . . . . . 8  |-  .\/  =  ( join `  K )
10 2lnne.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
118, 9, 10hlatexch2 29890 . . . . . . 7  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  R  e.  A  /\  Q  e.  A
)  /\  P  =/=  Q )  ->  ( P  .<_  ( R  .\/  Q
)  ->  R  .<_  ( P  .\/  Q ) ) )
127, 11syld3an2 1231 . . . . . 6  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  ->  ( P  .<_  ( R  .\/  Q
)  ->  R  .<_  ( P  .\/  Q ) ) )
1312con3d 127 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  P  =/=  Q )  ->  ( -.  R  .<_  ( P  .\/  Q )  ->  -.  P  .<_  ( R  .\/  Q
) ) )
14133exp 1152 . . . 4  |-  ( K  e.  HL  ->  (
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  ->  ( P  =/=  Q  ->  ( -.  R  .<_  ( P  .\/  Q )  ->  -.  P  .<_  ( R  .\/  Q
) ) ) ) )
1514imp4a 573 . . 3  |-  ( K  e.  HL  ->  (
( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  ->  ( ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q ) )  ->  -.  P  .<_  ( R  .\/  Q ) ) ) )
16153imp 1147 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )  ->  -.  P  .<_  ( R 
.\/  Q ) )
178, 9, 102llnne2N 29902 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  R  e.  A
)  /\  -.  P  .<_  ( R  .\/  Q
) )  ->  ( R  .\/  P )  =/=  ( R  .\/  Q
) )
181, 2, 3, 16, 17syl121anc 1189 1  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A
)  /\  ( P  =/=  Q  /\  -.  R  .<_  ( P  .\/  Q
) ) )  -> 
( R  .\/  P
)  =/=  ( R 
.\/  Q ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2575   class class class wbr 4180   ` cfv 5421  (class class class)co 6048   lecple 13499   joincjn 14364   Atomscatm 29758   HLchlt 29845
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-undef 6510  df-riota 6516  df-poset 14366  df-plt 14378  df-lub 14394  df-join 14396  df-lat 14438  df-covers 29761  df-ats 29762  df-atl 29793  df-cvlat 29817  df-hlat 29846
  Copyright terms: Public domain W3C validator