Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2lnat Unicode version

Theorem 2lnat 30032
Description: Two intersecting lines intersect at an atom. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
2lnat.b  |-  B  =  ( Base `  K
)
2lnat.m  |-  ./\  =  ( meet `  K )
2lnat.z  |-  .0.  =  ( 0. `  K )
2lnat.a  |-  A  =  ( Atoms `  K )
2lnat.n  |-  N  =  ( Lines `  K )
2lnat.f  |-  F  =  ( pmap `  K
)
Assertion
Ref Expression
2lnat  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  ( X  ./\  Y )  e.  A )

Proof of Theorem 2lnat
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 simp11 986 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  K  e.  HL )
2 hlatl 29609 . . . . 5  |-  ( K  e.  HL  ->  K  e.  AtLat )
31, 2syl 15 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  K  e.  AtLat )
4 hllat 29612 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
51, 4syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  K  e.  Lat )
6 simp12 987 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  X  e.  B )
7 simp13 988 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  Y  e.  B )
8 2lnat.b . . . . . 6  |-  B  =  ( Base `  K
)
9 2lnat.m . . . . . 6  |-  ./\  =  ( meet `  K )
108, 9latmcl 14367 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
115, 6, 7, 10syl3anc 1183 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  ( X  ./\  Y )  e.  B )
12 simp3r 985 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  ( X  ./\  Y )  =/= 
.0.  )
13 eqid 2366 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
14 2lnat.z . . . . 5  |-  .0.  =  ( 0. `  K )
15 2lnat.a . . . . 5  |-  A  =  ( Atoms `  K )
168, 13, 14, 15atlex 29565 . . . 4  |-  ( ( K  e.  AtLat  /\  ( X  ./\  Y )  e.  B  /\  ( X 
./\  Y )  =/= 
.0.  )  ->  E. p  e.  A  p ( le `  K ) ( X  ./\  Y )
)
173, 11, 12, 16syl3anc 1183 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  E. p  e.  A  p ( le `  K ) ( X  ./\  Y )
)
18 simp13l 1071 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  X  =/=  Y )
19 simp11 986 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B ) )
20 simp12l 1069 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( F `  X )  e.  N
)
21 simp12r 1070 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( F `  Y )  e.  N
)
22 2lnat.n . . . . . . . . . . 11  |-  N  =  ( Lines `  K )
23 2lnat.f . . . . . . . . . . 11  |-  F  =  ( pmap `  K
)
248, 13, 22, 23lncmp 30031 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N ) )  ->  ( X
( le `  K
) Y  <->  X  =  Y ) )
2519, 20, 21, 24syl12anc 1181 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( X
( le `  K
) Y  <->  X  =  Y ) )
26 simp111 1085 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  K  e.  HL )
2726, 4syl 15 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  K  e.  Lat )
28 simp112 1086 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  X  e.  B )
29 simp113 1087 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  Y  e.  B )
308, 13, 9latleeqm1 14395 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( le
`  K ) Y  <-> 
( X  ./\  Y
)  =  X ) )
3127, 28, 29, 30syl3anc 1183 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( X
( le `  K
) Y  <->  ( X  ./\ 
Y )  =  X ) )
3225, 31bitr3d 246 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( X  =  Y  <->  ( X  ./\  Y )  =  X ) )
3332necon3bid 2564 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( X  =/=  Y  <->  ( X  ./\  Y )  =/=  X ) )
3418, 33mpbid 201 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( X  ./\ 
Y )  =/=  X
)
35 simp3 958 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  p ( le `  K ) ( X  ./\  Y )
)
368, 13, 9latmle1 14392 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
) ( le `  K ) X )
3727, 28, 29, 36syl3anc 1183 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( X  ./\ 
Y ) ( le
`  K ) X )
38 hlpos 29614 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  Poset )
3926, 38syl 15 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  K  e.  Poset
)
408, 15atbase 29538 . . . . . . . . . . 11  |-  ( p  e.  A  ->  p  e.  B )
41403ad2ant2 978 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  p  e.  B )
4227, 28, 29, 10syl3anc 1183 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( X  ./\ 
Y )  e.  B
)
43 simp2 957 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  p  e.  A )
448, 13, 27, 41, 42, 28, 35, 37lattrd 14374 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  p ( le `  K ) X )
45 eqid 2366 . . . . . . . . . . . 12  |-  (  <o  `  K )  =  ( 
<o  `  K )
468, 13, 45, 15, 22, 23lncvrat 30030 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  p  e.  A )  /\  ( ( F `  X )  e.  N  /\  p ( le `  K ) X ) )  ->  p (  <o  `  K ) X )
4726, 28, 43, 20, 44, 46syl32anc 1191 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  p (  <o  `  K ) X )
488, 13, 45cvrnbtwn4 29528 . . . . . . . . . 10  |-  ( ( K  e.  Poset  /\  (
p  e.  B  /\  X  e.  B  /\  ( X  ./\  Y )  e.  B )  /\  p (  <o  `  K
) X )  -> 
( ( p ( le `  K ) ( X  ./\  Y
)  /\  ( X  ./\ 
Y ) ( le
`  K ) X )  <->  ( p  =  ( X  ./\  Y
)  \/  ( X 
./\  Y )  =  X ) ) )
4939, 41, 28, 42, 47, 48syl131anc 1196 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( (
p ( le `  K ) ( X 
./\  Y )  /\  ( X  ./\  Y ) ( le `  K
) X )  <->  ( p  =  ( X  ./\  Y )  \/  ( X 
./\  Y )  =  X ) ) )
5035, 37, 49mpbi2and 887 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( p  =  ( X  ./\  Y )  \/  ( X 
./\  Y )  =  X ) )
51 neor 2613 . . . . . . . 8  |-  ( ( p  =  ( X 
./\  Y )  \/  ( X  ./\  Y
)  =  X )  <-> 
( p  =/=  ( X  ./\  Y )  -> 
( X  ./\  Y
)  =  X ) )
5250, 51sylib 188 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( p  =/=  ( X  ./\  Y
)  ->  ( X  ./\ 
Y )  =  X ) )
5352necon1d 2598 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( ( X  ./\  Y )  =/= 
X  ->  p  =  ( X  ./\  Y ) ) )
5434, 53mpd 14 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  p  =  ( X  ./\  Y ) )
55543exp 1151 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  (
p  e.  A  -> 
( p ( le
`  K ) ( X  ./\  Y )  ->  p  =  ( X 
./\  Y ) ) ) )
5655reximdvai 2738 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  ( E. p  e.  A  p ( le `  K ) ( X 
./\  Y )  ->  E. p  e.  A  p  =  ( X  ./\ 
Y ) ) )
5717, 56mpd 14 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  E. p  e.  A  p  =  ( X  ./\  Y ) )
58 risset 2675 . 2  |-  ( ( X  ./\  Y )  e.  A  <->  E. p  e.  A  p  =  ( X  ./\ 
Y ) )
5957, 58sylibr 203 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  ( X  ./\  Y )  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715    =/= wne 2529   E.wrex 2629   class class class wbr 4125   ` cfv 5358  (class class class)co 5981   Basecbs 13356   lecple 13423   Posetcpo 14284   meetcmee 14289   0.cp0 14353   Latclat 14361    <o ccvr 29511   Atomscatm 29512   AtLatcal 29513   HLchlt 29599   Linesclines 29742   pmapcpmap 29745
This theorem is referenced by:  cdleme3h  30483  cdleme7ga  30496
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-undef 6440  df-riota 6446  df-poset 14290  df-plt 14302  df-lub 14318  df-glb 14319  df-join 14320  df-meet 14321  df-p0 14355  df-lat 14362  df-clat 14424  df-oposet 29425  df-ol 29427  df-oml 29428  df-covers 29515  df-ats 29516  df-atl 29547  df-cvlat 29571  df-hlat 29600  df-lines 29749  df-pmap 29752
  Copyright terms: Public domain W3C validator