Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2lnat Unicode version

Theorem 2lnat 29973
Description: Two intersecting lines intersect at an atom. (Contributed by NM, 30-Apr-2012.)
Hypotheses
Ref Expression
2lnat.b  |-  B  =  ( Base `  K
)
2lnat.m  |-  ./\  =  ( meet `  K )
2lnat.z  |-  .0.  =  ( 0. `  K )
2lnat.a  |-  A  =  ( Atoms `  K )
2lnat.n  |-  N  =  ( Lines `  K )
2lnat.f  |-  F  =  ( pmap `  K
)
Assertion
Ref Expression
2lnat  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  ( X  ./\  Y )  e.  A )

Proof of Theorem 2lnat
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 simp11 985 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  K  e.  HL )
2 hlatl 29550 . . . . 5  |-  ( K  e.  HL  ->  K  e.  AtLat )
31, 2syl 15 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  K  e.  AtLat )
4 hllat 29553 . . . . . 6  |-  ( K  e.  HL  ->  K  e.  Lat )
51, 4syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  K  e.  Lat )
6 simp12 986 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  X  e.  B )
7 simp13 987 . . . . 5  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  Y  e.  B )
8 2lnat.b . . . . . 6  |-  B  =  ( Base `  K
)
9 2lnat.m . . . . . 6  |-  ./\  =  ( meet `  K )
108, 9latmcl 14157 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
115, 6, 7, 10syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  ( X  ./\  Y )  e.  B )
12 simp3r 984 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  ( X  ./\  Y )  =/= 
.0.  )
13 eqid 2283 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
14 2lnat.z . . . . 5  |-  .0.  =  ( 0. `  K )
15 2lnat.a . . . . 5  |-  A  =  ( Atoms `  K )
168, 13, 14, 15atlex 29506 . . . 4  |-  ( ( K  e.  AtLat  /\  ( X  ./\  Y )  e.  B  /\  ( X 
./\  Y )  =/= 
.0.  )  ->  E. p  e.  A  p ( le `  K ) ( X  ./\  Y )
)
173, 11, 12, 16syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  E. p  e.  A  p ( le `  K ) ( X  ./\  Y )
)
18 simp13l 1070 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  X  =/=  Y )
19 simp11 985 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B ) )
20 simp12l 1068 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( F `  X )  e.  N
)
21 simp12r 1069 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( F `  Y )  e.  N
)
22 2lnat.n . . . . . . . . . . 11  |-  N  =  ( Lines `  K )
23 2lnat.f . . . . . . . . . . 11  |-  F  =  ( pmap `  K
)
248, 13, 22, 23lncmp 29972 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N ) )  ->  ( X
( le `  K
) Y  <->  X  =  Y ) )
2519, 20, 21, 24syl12anc 1180 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( X
( le `  K
) Y  <->  X  =  Y ) )
26 simp111 1084 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  K  e.  HL )
2726, 4syl 15 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  K  e.  Lat )
28 simp112 1085 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  X  e.  B )
29 simp113 1086 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  Y  e.  B )
308, 13, 9latleeqm1 14185 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( le
`  K ) Y  <-> 
( X  ./\  Y
)  =  X ) )
3127, 28, 29, 30syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( X
( le `  K
) Y  <->  ( X  ./\ 
Y )  =  X ) )
3225, 31bitr3d 246 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( X  =  Y  <->  ( X  ./\  Y )  =  X ) )
3332necon3bid 2481 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( X  =/=  Y  <->  ( X  ./\  Y )  =/=  X ) )
3418, 33mpbid 201 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( X  ./\ 
Y )  =/=  X
)
35 simp3 957 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  p ( le `  K ) ( X  ./\  Y )
)
368, 13, 9latmle1 14182 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
) ( le `  K ) X )
3727, 28, 29, 36syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( X  ./\ 
Y ) ( le
`  K ) X )
38 hlpos 29555 . . . . . . . . . . 11  |-  ( K  e.  HL  ->  K  e.  Poset )
3926, 38syl 15 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  K  e.  Poset
)
408, 15atbase 29479 . . . . . . . . . . 11  |-  ( p  e.  A  ->  p  e.  B )
41403ad2ant2 977 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  p  e.  B )
4227, 28, 29, 10syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( X  ./\ 
Y )  e.  B
)
43 simp2 956 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  p  e.  A )
448, 13, 27, 41, 42, 28, 35, 37lattrd 14164 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  p ( le `  K ) X )
45 eqid 2283 . . . . . . . . . . . 12  |-  (  <o  `  K )  =  ( 
<o  `  K )
468, 13, 45, 15, 22, 23lncvrat 29971 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  p  e.  A )  /\  ( ( F `  X )  e.  N  /\  p ( le `  K ) X ) )  ->  p (  <o  `  K ) X )
4726, 28, 43, 20, 44, 46syl32anc 1190 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  p (  <o  `  K ) X )
488, 13, 45cvrnbtwn4 29469 . . . . . . . . . 10  |-  ( ( K  e.  Poset  /\  (
p  e.  B  /\  X  e.  B  /\  ( X  ./\  Y )  e.  B )  /\  p (  <o  `  K
) X )  -> 
( ( p ( le `  K ) ( X  ./\  Y
)  /\  ( X  ./\ 
Y ) ( le
`  K ) X )  <->  ( p  =  ( X  ./\  Y
)  \/  ( X 
./\  Y )  =  X ) ) )
4939, 41, 28, 42, 47, 48syl131anc 1195 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( (
p ( le `  K ) ( X 
./\  Y )  /\  ( X  ./\  Y ) ( le `  K
) X )  <->  ( p  =  ( X  ./\  Y )  \/  ( X 
./\  Y )  =  X ) ) )
5035, 37, 49mpbi2and 887 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( p  =  ( X  ./\  Y )  \/  ( X 
./\  Y )  =  X ) )
51 neor 2530 . . . . . . . 8  |-  ( ( p  =  ( X 
./\  Y )  \/  ( X  ./\  Y
)  =  X )  <-> 
( p  =/=  ( X  ./\  Y )  -> 
( X  ./\  Y
)  =  X ) )
5250, 51sylib 188 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( p  =/=  ( X  ./\  Y
)  ->  ( X  ./\ 
Y )  =  X ) )
5352necon1d 2515 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  ( ( X  ./\  Y )  =/= 
X  ->  p  =  ( X  ./\  Y ) ) )
5434, 53mpd 14 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  (
( F `  X
)  e.  N  /\  ( F `  Y )  e.  N )  /\  ( X  =/=  Y  /\  ( X  ./\  Y
)  =/=  .0.  )
)  /\  p  e.  A  /\  p ( le
`  K ) ( X  ./\  Y )
)  ->  p  =  ( X  ./\  Y ) )
55543exp 1150 . . . 4  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  (
p  e.  A  -> 
( p ( le
`  K ) ( X  ./\  Y )  ->  p  =  ( X 
./\  Y ) ) ) )
5655reximdvai 2653 . . 3  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  ( E. p  e.  A  p ( le `  K ) ( X 
./\  Y )  ->  E. p  e.  A  p  =  ( X  ./\ 
Y ) ) )
5717, 56mpd 14 . 2  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  E. p  e.  A  p  =  ( X  ./\  Y ) )
58 risset 2590 . 2  |-  ( ( X  ./\  Y )  e.  A  <->  E. p  e.  A  p  =  ( X  ./\ 
Y ) )
5957, 58sylibr 203 1  |-  ( ( ( K  e.  HL  /\  X  e.  B  /\  Y  e.  B )  /\  ( ( F `  X )  e.  N  /\  ( F `  Y
)  e.  N )  /\  ( X  =/= 
Y  /\  ( X  ./\ 
Y )  =/=  .0.  ) )  ->  ( X  ./\  Y )  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   Posetcpo 14074   meetcmee 14079   0.cp0 14143   Latclat 14151    <o ccvr 29452   Atomscatm 29453   AtLatcal 29454   HLchlt 29540   Linesclines 29683   pmapcpmap 29686
This theorem is referenced by:  cdleme3h  30424  cdleme7ga  30437
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-lines 29690  df-pmap 29693
  Copyright terms: Public domain W3C validator