MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ndfcl Unicode version

Theorem 2ndfcl 14182
Description: The second projection functor is a functor onto the right argument. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
1stfcl.t  |-  T  =  ( C  X.c  D )
1stfcl.c  |-  ( ph  ->  C  e.  Cat )
1stfcl.d  |-  ( ph  ->  D  e.  Cat )
2ndfcl.p  |-  Q  =  ( C  2ndF  D )
Assertion
Ref Expression
2ndfcl  |-  ( ph  ->  Q  e.  ( T 
Func  D ) )

Proof of Theorem 2ndfcl
Dummy variables  f 
g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1stfcl.t . . . 4  |-  T  =  ( C  X.c  D )
2 eqid 2366 . . . . 5  |-  ( Base `  C )  =  (
Base `  C )
3 eqid 2366 . . . . 5  |-  ( Base `  D )  =  (
Base `  D )
41, 2, 3xpcbas 14162 . . . 4  |-  ( (
Base `  C )  X.  ( Base `  D
) )  =  (
Base `  T )
5 eqid 2366 . . . 4  |-  (  Hom  `  T )  =  (  Hom  `  T )
6 1stfcl.c . . . 4  |-  ( ph  ->  C  e.  Cat )
7 1stfcl.d . . . 4  |-  ( ph  ->  D  e.  Cat )
8 2ndfcl.p . . . 4  |-  Q  =  ( C  2ndF  D )
91, 4, 5, 6, 7, 82ndfval 14178 . . 3  |-  ( ph  ->  Q  =  <. ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) ,  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 2nd  |`  ( x
(  Hom  `  T ) y ) ) )
>. )
10 fo2nd 6267 . . . . . . . 8  |-  2nd : _V -onto-> _V
11 fofun 5558 . . . . . . . 8  |-  ( 2nd
: _V -onto-> _V  ->  Fun 
2nd )
1210, 11ax-mp 8 . . . . . . 7  |-  Fun  2nd
13 fvex 5646 . . . . . . . 8  |-  ( Base `  C )  e.  _V
14 fvex 5646 . . . . . . . 8  |-  ( Base `  D )  e.  _V
1513, 14xpex 4904 . . . . . . 7  |-  ( (
Base `  C )  X.  ( Base `  D
) )  e.  _V
16 resfunexg 5857 . . . . . . 7  |-  ( ( Fun  2nd  /\  (
( Base `  C )  X.  ( Base `  D
) )  e.  _V )  ->  ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) )  e. 
_V )
1712, 15, 16mp2an 653 . . . . . 6  |-  ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) )  e.  _V
1815, 15mpt2ex 6325 . . . . . 6  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 2nd  |`  ( x
(  Hom  `  T ) y ) ) )  e.  _V
1917, 18op2ndd 6258 . . . . 5  |-  ( Q  =  <. ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ,  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  D
) )  |->  ( 2nd  |`  ( x (  Hom  `  T ) y ) ) ) >.  ->  ( 2nd `  Q )  =  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  D
) )  |->  ( 2nd  |`  ( x (  Hom  `  T ) y ) ) ) )
209, 19syl 15 . . . 4  |-  ( ph  ->  ( 2nd `  Q
)  =  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 2nd  |`  ( x
(  Hom  `  T ) y ) ) ) )
2120opeq2d 3905 . . 3  |-  ( ph  -> 
<. ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ,  ( 2nd `  Q
) >.  =  <. ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) ,  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 2nd  |`  ( x
(  Hom  `  T ) y ) ) )
>. )
229, 21eqtr4d 2401 . 2  |-  ( ph  ->  Q  =  <. ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) ,  ( 2nd `  Q ) >. )
23 eqid 2366 . . . 4  |-  (  Hom  `  D )  =  (  Hom  `  D )
24 eqid 2366 . . . 4  |-  ( Id
`  T )  =  ( Id `  T
)
25 eqid 2366 . . . 4  |-  ( Id
`  D )  =  ( Id `  D
)
26 eqid 2366 . . . 4  |-  (comp `  T )  =  (comp `  T )
27 eqid 2366 . . . 4  |-  (comp `  D )  =  (comp `  D )
281, 6, 7xpccat 14174 . . . 4  |-  ( ph  ->  T  e.  Cat )
29 f2ndres 6269 . . . . 5  |-  ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) : ( ( Base `  C )  X.  ( Base `  D ) ) --> ( Base `  D
)
3029a1i 10 . . . 4  |-  ( ph  ->  ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) : ( ( Base `  C
)  X.  ( Base `  D ) ) --> (
Base `  D )
)
31 ovex 6006 . . . . . . . 8  |-  ( x (  Hom  `  T
) y )  e. 
_V
32 resfunexg 5857 . . . . . . . 8  |-  ( ( Fun  2nd  /\  (
x (  Hom  `  T
) y )  e. 
_V )  ->  ( 2nd  |`  ( x (  Hom  `  T )
y ) )  e. 
_V )
3312, 31, 32mp2an 653 . . . . . . 7  |-  ( 2nd  |`  ( x (  Hom  `  T ) y ) )  e.  _V
3433rgen2w 2696 . . . . . 6  |-  A. x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) A. y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ( 2nd  |`  ( x (  Hom  `  T ) y ) )  e.  _V
35 eqid 2366 . . . . . . 7  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 2nd  |`  ( x
(  Hom  `  T ) y ) ) )  =  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  D
) )  |->  ( 2nd  |`  ( x (  Hom  `  T ) y ) ) )
3635fnmpt2 6319 . . . . . 6  |-  ( A. x  e.  ( ( Base `  C )  X.  ( Base `  D
) ) A. y  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ( 2nd  |`  ( x
(  Hom  `  T ) y ) )  e. 
_V  ->  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  D
) )  |->  ( 2nd  |`  ( x (  Hom  `  T ) y ) ) )  Fn  (
( ( Base `  C
)  X.  ( Base `  D ) )  X.  ( ( Base `  C
)  X.  ( Base `  D ) ) ) )
3734, 36ax-mp 8 . . . . 5  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) ) ,  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  |->  ( 2nd  |`  ( x
(  Hom  `  T ) y ) ) )  Fn  ( ( (
Base `  C )  X.  ( Base `  D
) )  X.  (
( Base `  C )  X.  ( Base `  D
) ) )
3820fneq1d 5440 . . . . 5  |-  ( ph  ->  ( ( 2nd `  Q
)  Fn  ( ( ( Base `  C
)  X.  ( Base `  D ) )  X.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  <-> 
( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ,  y  e.  ( (
Base `  C )  X.  ( Base `  D
) )  |->  ( 2nd  |`  ( x (  Hom  `  T ) y ) ) )  Fn  (
( ( Base `  C
)  X.  ( Base `  D ) )  X.  ( ( Base `  C
)  X.  ( Base `  D ) ) ) ) )
3937, 38mpbiri 224 . . . 4  |-  ( ph  ->  ( 2nd `  Q
)  Fn  ( ( ( Base `  C
)  X.  ( Base `  D ) )  X.  ( ( Base `  C
)  X.  ( Base `  D ) ) ) )
40 f2ndres 6269 . . . . . 6  |-  ( 2nd  |`  ( ( ( 1st `  x ) (  Hom  `  C ) ( 1st `  y ) )  X.  ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) ) : ( ( ( 1st `  x ) (  Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) )
416adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  C  e.  Cat )
427adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  D  e.  Cat )
43 simprl 732 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
44 simprr 733 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
451, 4, 5, 41, 42, 8, 43, 442ndf2 14180 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x ( 2nd `  Q ) y )  =  ( 2nd  |`  ( x
(  Hom  `  T ) y ) ) )
46 eqid 2366 . . . . . . . . . 10  |-  (  Hom  `  C )  =  (  Hom  `  C )
471, 4, 46, 23, 5, 43, 44xpchom 14164 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x (  Hom  `  T )
y )  =  ( ( ( 1st `  x
) (  Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) )
4847reseq2d 5058 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( 2nd  |`  (
x (  Hom  `  T
) y ) )  =  ( 2nd  |`  (
( ( 1st `  x
) (  Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) ) )
4945, 48eqtrd 2398 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x ( 2nd `  Q ) y )  =  ( 2nd  |`  ( (
( 1st `  x
) (  Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) ) )
5049feq1d 5484 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( x ( 2nd `  Q
) y ) : ( ( ( 1st `  x ) (  Hom  `  C ) ( 1st `  y ) )  X.  ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) )  <->  ( 2nd  |`  ( ( ( 1st `  x ) (  Hom  `  C ) ( 1st `  y ) )  X.  ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) ) : ( ( ( 1st `  x ) (  Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) )
5140, 50mpbiri 224 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x ( 2nd `  Q ) y ) : ( ( ( 1st `  x
) (  Hom  `  C
) ( 1st `  y
) )  X.  (
( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) )
52 fvres 5649 . . . . . . . 8  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 x )  =  ( 2nd `  x
) )
5352ad2antrl 708 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 x )  =  ( 2nd `  x
) )
54 fvres 5649 . . . . . . . 8  |-  ( y  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 y )  =  ( 2nd `  y
) )
5554ad2antll 709 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 y )  =  ( 2nd `  y
) )
5653, 55oveq12d 5999 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  x ) (  Hom  `  D ) ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  y ) )  =  ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) )
5747, 56feq23d 5492 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( ( x ( 2nd `  Q
) y ) : ( x (  Hom  `  T ) y ) --> ( ( ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 x ) (  Hom  `  D )
( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) )  <->  ( x
( 2nd `  Q
) y ) : ( ( ( 1st `  x ) (  Hom  `  C ) ( 1st `  y ) )  X.  ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) --> ( ( 2nd `  x
) (  Hom  `  D
) ( 2nd `  y
) ) ) )
5851, 57mpbird 223 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ) )  ->  ( x ( 2nd `  Q ) y ) : ( x (  Hom  `  T
) y ) --> ( ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) (  Hom  `  D ) ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  y ) ) )
5928adantr 451 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  T  e.  Cat )
60 simpr 447 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
614, 5, 24, 59, 60catidcl 13794 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  T ) `  x )  e.  ( x (  Hom  `  T
) x ) )
62 fvres 5649 . . . . . . 7  |-  ( ( ( Id `  T
) `  x )  e.  ( x (  Hom  `  T ) x )  ->  ( ( 2nd  |`  ( x (  Hom  `  T ) x ) ) `  ( ( Id `  T ) `
 x ) )  =  ( 2nd `  (
( Id `  T
) `  x )
) )
6361, 62syl 15 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( 2nd  |`  ( x (  Hom  `  T ) x ) ) `  ( ( Id `  T ) `
 x ) )  =  ( 2nd `  (
( Id `  T
) `  x )
) )
64 1st2nd2 6286 . . . . . . . . . 10  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
6564adantl 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >. )
6665fveq2d 5636 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  T ) `  x )  =  ( ( Id `  T
) `  <. ( 1st `  x ) ,  ( 2nd `  x )
>. ) )
676adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  C  e.  Cat )
687adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  D  e.  Cat )
69 eqid 2366 . . . . . . . . 9  |-  ( Id
`  C )  =  ( Id `  C
)
70 xp1st 6276 . . . . . . . . . 10  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( 1st `  x
)  e.  ( Base `  C ) )
7170adantl 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( 1st `  x
)  e.  ( Base `  C ) )
72 xp2nd 6277 . . . . . . . . . 10  |-  ( x  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( 2nd `  x
)  e.  ( Base `  D ) )
7372adantl 452 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( 2nd `  x
)  e.  ( Base `  D ) )
741, 67, 68, 2, 3, 69, 25, 24, 71, 73xpcid 14173 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  T ) `  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )  =  <. ( ( Id
`  C ) `  ( 1st `  x ) ) ,  ( ( Id `  D ) `
 ( 2nd `  x
) ) >. )
7566, 74eqtrd 2398 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  T ) `  x )  =  <. ( ( Id `  C
) `  ( 1st `  x ) ) ,  ( ( Id `  D ) `  ( 2nd `  x ) )
>. )
76 fvex 5646 . . . . . . . 8  |-  ( ( Id `  C ) `
 ( 1st `  x
) )  e.  _V
77 fvex 5646 . . . . . . . 8  |-  ( ( Id `  D ) `
 ( 2nd `  x
) )  e.  _V
7876, 77op2ndd 6258 . . . . . . 7  |-  ( ( ( Id `  T
) `  x )  =  <. ( ( Id
`  C ) `  ( 1st `  x ) ) ,  ( ( Id `  D ) `
 ( 2nd `  x
) ) >.  ->  ( 2nd `  ( ( Id
`  T ) `  x ) )  =  ( ( Id `  D ) `  ( 2nd `  x ) ) )
7975, 78syl 15 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( 2nd `  (
( Id `  T
) `  x )
)  =  ( ( Id `  D ) `
 ( 2nd `  x
) ) )
80 eqidd 2367 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  D ) `  ( 2nd `  x ) )  =  ( ( Id `  D ) `
 ( 2nd `  x
) ) )
8163, 79, 803eqtrd 2402 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( 2nd  |`  ( x (  Hom  `  T ) x ) ) `  ( ( Id `  T ) `
 x ) )  =  ( ( Id
`  D ) `  ( 2nd `  x ) ) )
821, 4, 5, 67, 68, 8, 60, 602ndf2 14180 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( x ( 2nd `  Q ) x )  =  ( 2nd  |`  ( x
(  Hom  `  T ) x ) ) )
8382fveq1d 5634 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( x ( 2nd `  Q
) x ) `  ( ( Id `  T ) `  x
) )  =  ( ( 2nd  |`  (
x (  Hom  `  T
) x ) ) `
 ( ( Id
`  T ) `  x ) ) )
8452adantl 452 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 x )  =  ( 2nd `  x
) )
8584fveq2d 5636 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( Id
`  D ) `  ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) )  =  ( ( Id `  D ) `  ( 2nd `  x ) ) )
8681, 83, 853eqtr4d 2408 . . . 4  |-  ( (
ph  /\  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  ->  ( ( x ( 2nd `  Q
) x ) `  ( ( Id `  T ) `  x
) )  =  ( ( Id `  D
) `  ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) `  x ) ) )
87283ad2ant1 977 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  T  e.  Cat )
88 simp21 989 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  x  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
89 simp22 990 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  y  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
90 simp23 991 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
91 simp3l 984 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  f  e.  ( x (  Hom  `  T ) y ) )
92 simp3r 985 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  g  e.  ( y (  Hom  `  T ) z ) )
934, 5, 26, 87, 88, 89, 90, 91, 92catcocl 13797 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( g
( <. x ,  y
>. (comp `  T )
z ) f )  e.  ( x (  Hom  `  T )
z ) )
94 fvres 5649 . . . . . . 7  |-  ( ( g ( <. x ,  y >. (comp `  T ) z ) f )  e.  ( x (  Hom  `  T
) z )  -> 
( ( 2nd  |`  (
x (  Hom  `  T
) z ) ) `
 ( g (
<. x ,  y >.
(comp `  T )
z ) f ) )  =  ( 2nd `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) ) )
9593, 94syl 15 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( ( 2nd  |`  ( x (  Hom  `  T )
z ) ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( 2nd `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) ) )
961, 4, 5, 26, 88, 89, 90, 91, 92, 27xpcco2nd 14169 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( 2nd `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( ( 2nd `  g ) ( <. ( 2nd `  x
) ,  ( 2nd `  y ) >. (comp `  D ) ( 2nd `  z ) ) ( 2nd `  f ) ) )
9795, 96eqtrd 2398 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( ( 2nd  |`  ( x (  Hom  `  T )
z ) ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( ( 2nd `  g ) ( <. ( 2nd `  x
) ,  ( 2nd `  y ) >. (comp `  D ) ( 2nd `  z ) ) ( 2nd `  f ) ) )
9863ad2ant1 977 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  C  e.  Cat )
9973ad2ant1 977 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  D  e.  Cat )
1001, 4, 5, 98, 99, 8, 88, 902ndf2 14180 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( x
( 2nd `  Q
) z )  =  ( 2nd  |`  (
x (  Hom  `  T
) z ) ) )
101100fveq1d 5634 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( (
x ( 2nd `  Q
) z ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( ( 2nd  |`  ( x
(  Hom  `  T ) z ) ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) ) )
10288, 52syl 15 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) `  x )  =  ( 2nd `  x
) )
10389, 54syl 15 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) `  y )  =  ( 2nd `  y
) )
104102, 103opeq12d 3906 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  <. ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ,  ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) >.  =  <. ( 2nd `  x ) ,  ( 2nd `  y
) >. )
105 fvres 5649 . . . . . . . 8  |-  ( z  e.  ( ( Base `  C )  X.  ( Base `  D ) )  ->  ( ( 2nd  |`  ( ( Base `  C
)  X.  ( Base `  D ) ) ) `
 z )  =  ( 2nd `  z
) )
10690, 105syl 15 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D ) ) ) `  z )  =  ( 2nd `  z
) )
107104, 106oveq12d 5999 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( <. ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ,  ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) >. (comp `  D ) ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  z ) )  =  ( <. ( 2nd `  x
) ,  ( 2nd `  y ) >. (comp `  D ) ( 2nd `  z ) ) )
1081, 4, 5, 98, 99, 8, 89, 902ndf2 14180 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( y
( 2nd `  Q
) z )  =  ( 2nd  |`  (
y (  Hom  `  T
) z ) ) )
109108fveq1d 5634 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( (
y ( 2nd `  Q
) z ) `  g )  =  ( ( 2nd  |`  (
y (  Hom  `  T
) z ) ) `
 g ) )
110 fvres 5649 . . . . . . . 8  |-  ( g  e.  ( y (  Hom  `  T )
z )  ->  (
( 2nd  |`  ( y (  Hom  `  T
) z ) ) `
 g )  =  ( 2nd `  g
) )
11192, 110syl 15 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( ( 2nd  |`  ( y (  Hom  `  T )
z ) ) `  g )  =  ( 2nd `  g ) )
112109, 111eqtrd 2398 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( (
y ( 2nd `  Q
) z ) `  g )  =  ( 2nd `  g ) )
1131, 4, 5, 98, 99, 8, 88, 892ndf2 14180 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( x
( 2nd `  Q
) y )  =  ( 2nd  |`  (
x (  Hom  `  T
) y ) ) )
114113fveq1d 5634 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( (
x ( 2nd `  Q
) y ) `  f )  =  ( ( 2nd  |`  (
x (  Hom  `  T
) y ) ) `
 f ) )
115 fvres 5649 . . . . . . . 8  |-  ( f  e.  ( x (  Hom  `  T )
y )  ->  (
( 2nd  |`  ( x (  Hom  `  T
) y ) ) `
 f )  =  ( 2nd `  f
) )
11691, 115syl 15 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( ( 2nd  |`  ( x (  Hom  `  T )
y ) ) `  f )  =  ( 2nd `  f ) )
117114, 116eqtrd 2398 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( (
x ( 2nd `  Q
) y ) `  f )  =  ( 2nd `  f ) )
118107, 112, 117oveq123d 6002 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( (
( y ( 2nd `  Q ) z ) `
 g ) (
<. ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ,  ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) >. (comp `  D ) ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  z ) ) ( ( x ( 2nd `  Q ) y ) `
 f ) )  =  ( ( 2nd `  g ) ( <.
( 2nd `  x
) ,  ( 2nd `  y ) >. (comp `  D ) ( 2nd `  z ) ) ( 2nd `  f ) ) )
11997, 101, 1183eqtr4d 2408 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  y  e.  ( ( Base `  C )  X.  ( Base `  D
) )  /\  z  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )  /\  ( f  e.  ( x (  Hom  `  T ) y )  /\  g  e.  ( y (  Hom  `  T
) z ) ) )  ->  ( (
x ( 2nd `  Q
) z ) `  ( g ( <.
x ,  y >.
(comp `  T )
z ) f ) )  =  ( ( ( y ( 2nd `  Q ) z ) `
 g ) (
<. ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  x ) ,  ( ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) `  y ) >. (comp `  D ) ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) `  z ) ) ( ( x ( 2nd `  Q ) y ) `
 f ) ) )
1204, 3, 5, 23, 24, 25, 26, 27, 28, 7, 30, 39, 58, 86, 119isfuncd 13949 . . 3  |-  ( ph  ->  ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ( T  Func  D )
( 2nd `  Q
) )
121 df-br 4126 . . 3  |-  ( ( 2nd  |`  ( ( Base `  C )  X.  ( Base `  D
) ) ) ( T  Func  D )
( 2nd `  Q
)  <->  <. ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ,  ( 2nd `  Q
) >.  e.  ( T 
Func  D ) )
122120, 121sylib 188 . 2  |-  ( ph  -> 
<. ( 2nd  |`  (
( Base `  C )  X.  ( Base `  D
) ) ) ,  ( 2nd `  Q
) >.  e.  ( T 
Func  D ) )
12322, 122eqeltrd 2440 1  |-  ( ph  ->  Q  e.  ( T 
Func  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715   A.wral 2628   _Vcvv 2873   <.cop 3732   class class class wbr 4125    X. cxp 4790    |` cres 4794   Fun wfun 5352    Fn wfn 5353   -->wf 5354   -onto->wfo 5356   ` cfv 5358  (class class class)co 5981    e. cmpt2 5983   1stc1st 6247   2ndc2nd 6248   Basecbs 13356    Hom chom 13427  compcco 13428   Catccat 13776   Idccid 13777    Func cfunc 13938    X.c cxpc 14152    2ndF c2ndf 14154
This theorem is referenced by:  prf2nd  14189  1st2ndprf  14190  uncfcl  14219  uncf1  14220  uncf2  14221  curf2ndf  14231  yonedalem1  14256  yonedalem21  14257  yonedalem22  14262
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615  ax-cnex 8940  ax-resscn 8941  ax-1cn 8942  ax-icn 8943  ax-addcl 8944  ax-addrcl 8945  ax-mulcl 8946  ax-mulrcl 8947  ax-mulcom 8948  ax-addass 8949  ax-mulass 8950  ax-distr 8951  ax-i2m1 8952  ax-1ne0 8953  ax-1rid 8954  ax-rnegex 8955  ax-rrecex 8956  ax-cnre 8957  ax-pre-lttri 8958  ax-pre-lttrn 8959  ax-pre-ltadd 8960  ax-pre-mulgt0 8961
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-int 3965  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-riota 6446  df-recs 6530  df-rdg 6565  df-1o 6621  df-oadd 6625  df-er 6802  df-map 6917  df-ixp 6961  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-pnf 9016  df-mnf 9017  df-xr 9018  df-ltxr 9019  df-le 9020  df-sub 9186  df-neg 9187  df-nn 9894  df-2 9951  df-3 9952  df-4 9953  df-5 9954  df-6 9955  df-7 9956  df-8 9957  df-9 9958  df-10 9959  df-n0 10115  df-z 10176  df-dec 10276  df-uz 10382  df-fz 10936  df-struct 13358  df-ndx 13359  df-slot 13360  df-base 13361  df-hom 13440  df-cco 13441  df-cat 13780  df-cid 13781  df-func 13942  df-xpc 14156  df-2ndf 14158
  Copyright terms: Public domain W3C validator