Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2nn0ind Unicode version

Theorem 2nn0ind 26353
Description: Induction on natural numbers with two base cases, for use with Lucas-type sequences. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Hypotheses
Ref Expression
2nn0ind.1  |-  ps
2nn0ind.2  |-  ch
2nn0ind.3  |-  ( y  e.  NN  ->  (
( th  /\  ta )  ->  et ) )
2nn0ind.4  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
2nn0ind.5  |-  ( x  =  1  ->  ( ph 
<->  ch ) )
2nn0ind.6  |-  ( x  =  ( y  - 
1 )  ->  ( ph 
<->  th ) )
2nn0ind.7  |-  ( x  =  y  ->  ( ph 
<->  ta ) )
2nn0ind.8  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  et ) )
2nn0ind.9  |-  ( x  =  A  ->  ( ph 
<->  rh ) )
Assertion
Ref Expression
2nn0ind  |-  ( A  e.  NN0  ->  rh )
Distinct variable groups:    x, y    x, A    ps, x    ch, x    th, x    ta, x    et, x    rh, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    et( y)    rh( y)    A( y)

Proof of Theorem 2nn0ind
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 nn0p1nn 10092 . . . 4  |-  ( A  e.  NN0  ->  ( A  +  1 )  e.  NN )
2 oveq1 5949 . . . . . . 7  |-  ( a  =  1  ->  (
a  -  1 )  =  ( 1  -  1 ) )
3 dfsbcq 3069 . . . . . . 7  |-  ( ( a  -  1 )  =  ( 1  -  1 )  ->  ( [. ( a  -  1 )  /  x ]. ph  <->  [. ( 1  -  1 )  /  x ]. ph ) )
42, 3syl 15 . . . . . 6  |-  ( a  =  1  ->  ( [. ( a  -  1 )  /  x ]. ph  <->  [. ( 1  -  1 )  /  x ]. ph ) )
5 dfsbcq 3069 . . . . . 6  |-  ( a  =  1  ->  ( [. a  /  x ]. ph  <->  [. 1  /  x ]. ph ) )
64, 5anbi12d 691 . . . . 5  |-  ( a  =  1  ->  (
( [. ( a  - 
1 )  /  x ]. ph  /\  [. a  /  x ]. ph )  <->  (
[. ( 1  -  1 )  /  x ]. ph  /\  [. 1  /  x ]. ph )
) )
7 oveq1 5949 . . . . . . 7  |-  ( a  =  y  ->  (
a  -  1 )  =  ( y  - 
1 ) )
8 dfsbcq 3069 . . . . . . 7  |-  ( ( a  -  1 )  =  ( y  - 
1 )  ->  ( [. ( a  -  1 )  /  x ]. ph  <->  [. ( y  -  1 )  /  x ]. ph ) )
97, 8syl 15 . . . . . 6  |-  ( a  =  y  ->  ( [. ( a  -  1 )  /  x ]. ph  <->  [. ( y  -  1 )  /  x ]. ph ) )
10 dfsbcq 3069 . . . . . 6  |-  ( a  =  y  ->  ( [. a  /  x ]. ph  <->  [. y  /  x ]. ph ) )
119, 10anbi12d 691 . . . . 5  |-  ( a  =  y  ->  (
( [. ( a  - 
1 )  /  x ]. ph  /\  [. a  /  x ]. ph )  <->  (
[. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )
) )
12 oveq1 5949 . . . . . . 7  |-  ( a  =  ( y  +  1 )  ->  (
a  -  1 )  =  ( ( y  +  1 )  - 
1 ) )
13 dfsbcq 3069 . . . . . . 7  |-  ( ( a  -  1 )  =  ( ( y  +  1 )  - 
1 )  ->  ( [. ( a  -  1 )  /  x ]. ph  <->  [. ( ( y  +  1 )  -  1 )  /  x ]. ph ) )
1412, 13syl 15 . . . . . 6  |-  ( a  =  ( y  +  1 )  ->  ( [. ( a  -  1 )  /  x ]. ph  <->  [. ( ( y  +  1 )  -  1 )  /  x ]. ph ) )
15 dfsbcq 3069 . . . . . 6  |-  ( a  =  ( y  +  1 )  ->  ( [. a  /  x ]. ph  <->  [. ( y  +  1 )  /  x ]. ph ) )
1614, 15anbi12d 691 . . . . 5  |-  ( a  =  ( y  +  1 )  ->  (
( [. ( a  - 
1 )  /  x ]. ph  /\  [. a  /  x ]. ph )  <->  (
[. ( ( y  +  1 )  - 
1 )  /  x ]. ph  /\  [. (
y  +  1 )  /  x ]. ph )
) )
17 oveq1 5949 . . . . . . 7  |-  ( a  =  ( A  + 
1 )  ->  (
a  -  1 )  =  ( ( A  +  1 )  - 
1 ) )
18 dfsbcq 3069 . . . . . . 7  |-  ( ( a  -  1 )  =  ( ( A  +  1 )  - 
1 )  ->  ( [. ( a  -  1 )  /  x ]. ph  <->  [. ( ( A  + 
1 )  -  1 )  /  x ]. ph ) )
1917, 18syl 15 . . . . . 6  |-  ( a  =  ( A  + 
1 )  ->  ( [. ( a  -  1 )  /  x ]. ph  <->  [. ( ( A  + 
1 )  -  1 )  /  x ]. ph ) )
20 dfsbcq 3069 . . . . . 6  |-  ( a  =  ( A  + 
1 )  ->  ( [. a  /  x ]. ph  <->  [. ( A  + 
1 )  /  x ]. ph ) )
2119, 20anbi12d 691 . . . . 5  |-  ( a  =  ( A  + 
1 )  ->  (
( [. ( a  - 
1 )  /  x ]. ph  /\  [. a  /  x ]. ph )  <->  (
[. ( ( A  +  1 )  - 
1 )  /  x ]. ph  /\  [. ( A  +  1 )  /  x ]. ph )
) )
22 2nn0ind.1 . . . . . . 7  |-  ps
23 ovex 5967 . . . . . . . 8  |-  ( 1  -  1 )  e. 
_V
24 1m1e0 9901 . . . . . . . . . 10  |-  ( 1  -  1 )  =  0
2524eqeq2i 2368 . . . . . . . . 9  |-  ( x  =  ( 1  -  1 )  <->  x  = 
0 )
26 2nn0ind.4 . . . . . . . . 9  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
2725, 26sylbi 187 . . . . . . . 8  |-  ( x  =  ( 1  -  1 )  ->  ( ph 
<->  ps ) )
2823, 27sbcie 3101 . . . . . . 7  |-  ( [. ( 1  -  1 )  /  x ]. ph  <->  ps )
2922, 28mpbir 200 . . . . . 6  |-  [. (
1  -  1 )  /  x ]. ph
30 2nn0ind.2 . . . . . . 7  |-  ch
31 1ex 8920 . . . . . . . 8  |-  1  e.  _V
32 2nn0ind.5 . . . . . . . 8  |-  ( x  =  1  ->  ( ph 
<->  ch ) )
3331, 32sbcie 3101 . . . . . . 7  |-  ( [.
1  /  x ]. ph  <->  ch )
3430, 33mpbir 200 . . . . . 6  |-  [. 1  /  x ]. ph
3529, 34pm3.2i 441 . . . . 5  |-  ( [. ( 1  -  1 )  /  x ]. ph 
/\  [. 1  /  x ]. ph )
36 simprr 733 . . . . . . . 8  |-  ( ( y  e.  NN  /\  ( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )
)  ->  [. y  /  x ]. ph )
37 nncn 9841 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  e.  CC )
38 ax-1cn 8882 . . . . . . . . . . 11  |-  1  e.  CC
39 pncan 9144 . . . . . . . . . . 11  |-  ( ( y  e.  CC  /\  1  e.  CC )  ->  ( ( y  +  1 )  -  1 )  =  y )
4037, 38, 39sylancl 643 . . . . . . . . . 10  |-  ( y  e.  NN  ->  (
( y  +  1 )  -  1 )  =  y )
4140adantr 451 . . . . . . . . 9  |-  ( ( y  e.  NN  /\  ( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )
)  ->  ( (
y  +  1 )  -  1 )  =  y )
42 dfsbcq 3069 . . . . . . . . 9  |-  ( ( ( y  +  1 )  -  1 )  =  y  ->  ( [. ( ( y  +  1 )  -  1 )  /  x ]. ph  <->  [. y  /  x ]. ph ) )
4341, 42syl 15 . . . . . . . 8  |-  ( ( y  e.  NN  /\  ( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )
)  ->  ( [. ( ( y  +  1 )  -  1 )  /  x ]. ph  <->  [. y  /  x ]. ph ) )
4436, 43mpbird 223 . . . . . . 7  |-  ( ( y  e.  NN  /\  ( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )
)  ->  [. ( ( y  +  1 )  -  1 )  /  x ]. ph )
45 2nn0ind.3 . . . . . . . . 9  |-  ( y  e.  NN  ->  (
( th  /\  ta )  ->  et ) )
46 ovex 5967 . . . . . . . . . . 11  |-  ( y  -  1 )  e. 
_V
47 2nn0ind.6 . . . . . . . . . . 11  |-  ( x  =  ( y  - 
1 )  ->  ( ph 
<->  th ) )
4846, 47sbcie 3101 . . . . . . . . . 10  |-  ( [. ( y  -  1 )  /  x ]. ph  <->  th )
49 vex 2867 . . . . . . . . . . 11  |-  y  e. 
_V
50 2nn0ind.7 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( ph 
<->  ta ) )
5149, 50sbcie 3101 . . . . . . . . . 10  |-  ( [. y  /  x ]. ph  <->  ta )
5248, 51anbi12i 678 . . . . . . . . 9  |-  ( (
[. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )  <->  ( th  /\  ta )
)
53 ovex 5967 . . . . . . . . . 10  |-  ( y  +  1 )  e. 
_V
54 2nn0ind.8 . . . . . . . . . 10  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  et ) )
5553, 54sbcie 3101 . . . . . . . . 9  |-  ( [. ( y  +  1 )  /  x ]. ph  <->  et )
5645, 52, 553imtr4g 261 . . . . . . . 8  |-  ( y  e.  NN  ->  (
( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )  ->  [. ( y  +  1 )  /  x ]. ph ) )
5756imp 418 . . . . . . 7  |-  ( ( y  e.  NN  /\  ( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )
)  ->  [. ( y  +  1 )  /  x ]. ph )
5844, 57jca 518 . . . . . 6  |-  ( ( y  e.  NN  /\  ( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )
)  ->  ( [. ( ( y  +  1 )  -  1 )  /  x ]. ph 
/\  [. ( y  +  1 )  /  x ]. ph ) )
5958ex 423 . . . . 5  |-  ( y  e.  NN  ->  (
( [. ( y  - 
1 )  /  x ]. ph  /\  [. y  /  x ]. ph )  ->  ( [. ( ( y  +  1 )  -  1 )  /  x ]. ph  /\  [. (
y  +  1 )  /  x ]. ph )
) )
606, 11, 16, 21, 35, 59nnind 9851 . . . 4  |-  ( ( A  +  1 )  e.  NN  ->  ( [. ( ( A  + 
1 )  -  1 )  /  x ]. ph 
/\  [. ( A  + 
1 )  /  x ]. ph ) )
611, 60syl 15 . . 3  |-  ( A  e.  NN0  ->  ( [. ( ( A  + 
1 )  -  1 )  /  x ]. ph 
/\  [. ( A  + 
1 )  /  x ]. ph ) )
62 nn0cn 10064 . . . . . . 7  |-  ( A  e.  NN0  ->  A  e.  CC )
63 pncan 9144 . . . . . . 7  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  + 
1 )  -  1 )  =  A )
6462, 38, 63sylancl 643 . . . . . 6  |-  ( A  e.  NN0  ->  ( ( A  +  1 )  -  1 )  =  A )
65 dfsbcq 3069 . . . . . 6  |-  ( ( ( A  +  1 )  -  1 )  =  A  ->  ( [. ( ( A  + 
1 )  -  1 )  /  x ]. ph  <->  [. A  /  x ]. ph ) )
6664, 65syl 15 . . . . 5  |-  ( A  e.  NN0  ->  ( [. ( ( A  + 
1 )  -  1 )  /  x ]. ph  <->  [. A  /  x ]. ph ) )
6766biimpa 470 . . . 4  |-  ( ( A  e.  NN0  /\  [. ( ( A  + 
1 )  -  1 )  /  x ]. ph )  ->  [. A  /  x ]. ph )
6867adantrr 697 . . 3  |-  ( ( A  e.  NN0  /\  ( [. ( ( A  +  1 )  - 
1 )  /  x ]. ph  /\  [. ( A  +  1 )  /  x ]. ph )
)  ->  [. A  /  x ]. ph )
6961, 68mpdan 649 . 2  |-  ( A  e.  NN0  ->  [. A  /  x ]. ph )
70 2nn0ind.9 . . 3  |-  ( x  =  A  ->  ( ph 
<->  rh ) )
7170sbcieg 3099 . 2  |-  ( A  e.  NN0  ->  ( [. A  /  x ]. ph  <->  rh )
)
7269, 71mpbid 201 1  |-  ( A  e.  NN0  ->  rh )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1642    e. wcel 1710   [.wsbc 3067  (class class class)co 5942   CCcc 8822   0cc0 8824   1c1 8825    + caddc 8827    - cmin 9124   NNcn 9833   NN0cn0 10054
This theorem is referenced by:  jm2.18  26404  jm2.15nn0  26419  jm2.16nn0  26420
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-riota 6388  df-recs 6472  df-rdg 6507  df-er 6744  df-en 6949  df-dom 6950  df-sdom 6951  df-pnf 8956  df-mnf 8957  df-ltxr 8959  df-sub 9126  df-nn 9834  df-n0 10055
  Copyright terms: Public domain W3C validator