MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2oconcl Structured version   Unicode version

Theorem 2oconcl 6747
Description: Closure of the pair swapping function on  2o. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
2oconcl  |-  ( A  e.  2o  ->  ( 1o  \  A )  e.  2o )

Proof of Theorem 2oconcl
StepHypRef Expression
1 elpri 3834 . . . . 5  |-  ( A  e.  { (/) ,  1o }  ->  ( A  =  (/)  \/  A  =  1o ) )
2 difeq2 3459 . . . . . . . 8  |-  ( A  =  (/)  ->  ( 1o 
\  A )  =  ( 1o  \  (/) ) )
3 dif0 3698 . . . . . . . 8  |-  ( 1o 
\  (/) )  =  1o
42, 3syl6eq 2484 . . . . . . 7  |-  ( A  =  (/)  ->  ( 1o 
\  A )  =  1o )
5 difeq2 3459 . . . . . . . 8  |-  ( A  =  1o  ->  ( 1o  \  A )  =  ( 1o  \  1o ) )
6 difid 3696 . . . . . . . 8  |-  ( 1o 
\  1o )  =  (/)
75, 6syl6eq 2484 . . . . . . 7  |-  ( A  =  1o  ->  ( 1o  \  A )  =  (/) )
84, 7orim12i 503 . . . . . 6  |-  ( ( A  =  (/)  \/  A  =  1o )  ->  (
( 1o  \  A
)  =  1o  \/  ( 1o  \  A )  =  (/) ) )
98orcomd 378 . . . . 5  |-  ( ( A  =  (/)  \/  A  =  1o )  ->  (
( 1o  \  A
)  =  (/)  \/  ( 1o  \  A )  =  1o ) )
101, 9syl 16 . . . 4  |-  ( A  e.  { (/) ,  1o }  ->  ( ( 1o 
\  A )  =  (/)  \/  ( 1o  \  A )  =  1o ) )
11 1on 6731 . . . . . 6  |-  1o  e.  On
12 difexg 4351 . . . . . 6  |-  ( 1o  e.  On  ->  ( 1o  \  A )  e. 
_V )
1311, 12ax-mp 8 . . . . 5  |-  ( 1o 
\  A )  e. 
_V
1413elpr 3832 . . . 4  |-  ( ( 1o  \  A )  e.  { (/) ,  1o } 
<->  ( ( 1o  \  A )  =  (/)  \/  ( 1o  \  A
)  =  1o ) )
1510, 14sylibr 204 . . 3  |-  ( A  e.  { (/) ,  1o }  ->  ( 1o  \  A )  e.  { (/)
,  1o } )
16 df2o3 6737 . . 3  |-  2o  =  { (/) ,  1o }
1715, 16syl6eleqr 2527 . 2  |-  ( A  e.  { (/) ,  1o }  ->  ( 1o  \  A )  e.  2o )
1817, 16eleq2s 2528 1  |-  ( A  e.  2o  ->  ( 1o  \  A )  e.  2o )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    = wceq 1652    e. wcel 1725   _Vcvv 2956    \ cdif 3317   (/)c0 3628   {cpr 3815   Oncon0 4581   1oc1o 6717   2oc2o 6718
This theorem is referenced by:  efgmf  15345  efgmnvl  15346  efglem  15348  frgpuplem  15404
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-tr 4303  df-eprel 4494  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-suc 4587  df-1o 6724  df-2o 6725
  Copyright terms: Public domain W3C validator