Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2polvalN Unicode version

Theorem 2polvalN 30103
Description: Value of double polarity. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2polval.u  |-  U  =  ( lub `  K
)
2polval.a  |-  A  =  ( Atoms `  K )
2polval.m  |-  M  =  ( pmap `  K
)
2polval.p  |-  ._|_  =  ( _|_ P `  K
)
Assertion
Ref Expression
2polvalN  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
(  ._|_  `  (  ._|_  `  X ) )  =  ( M `  ( U `  X )
) )

Proof of Theorem 2polvalN
StepHypRef Expression
1 2polval.u . . . 4  |-  U  =  ( lub `  K
)
2 eqid 2283 . . . 4  |-  ( oc
`  K )  =  ( oc `  K
)
3 2polval.a . . . 4  |-  A  =  ( Atoms `  K )
4 2polval.m . . . 4  |-  M  =  ( pmap `  K
)
5 2polval.p . . . 4  |-  ._|_  =  ( _|_ P `  K
)
61, 2, 3, 4, 5polval2N 30095 . . 3  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
(  ._|_  `  X )  =  ( M `  ( ( oc `  K ) `  ( U `  X )
) ) )
76fveq2d 5529 . 2  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
(  ._|_  `  (  ._|_  `  X ) )  =  (  ._|_  `  ( M `
 ( ( oc
`  K ) `  ( U `  X ) ) ) ) )
8 hlop 29552 . . . . 5  |-  ( K  e.  HL  ->  K  e.  OP )
98adantr 451 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A )  ->  K  e.  OP )
10 hlclat 29548 . . . . 5  |-  ( K  e.  HL  ->  K  e.  CLat )
11 eqid 2283 . . . . . . 7  |-  ( Base `  K )  =  (
Base `  K )
1211, 3atssbase 29480 . . . . . 6  |-  A  C_  ( Base `  K )
13 sstr 3187 . . . . . 6  |-  ( ( X  C_  A  /\  A  C_  ( Base `  K
) )  ->  X  C_  ( Base `  K
) )
1412, 13mpan2 652 . . . . 5  |-  ( X 
C_  A  ->  X  C_  ( Base `  K
) )
1511, 1clatlubcl 14217 . . . . 5  |-  ( ( K  e.  CLat  /\  X  C_  ( Base `  K
) )  ->  ( U `  X )  e.  ( Base `  K
) )
1610, 14, 15syl2an 463 . . . 4  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( U `  X
)  e.  ( Base `  K ) )
1711, 2opoccl 29384 . . . 4  |-  ( ( K  e.  OP  /\  ( U `  X )  e.  ( Base `  K
) )  ->  (
( oc `  K
) `  ( U `  X ) )  e.  ( Base `  K
) )
189, 16, 17syl2anc 642 . . 3  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( oc `  K ) `  ( U `  X )
)  e.  ( Base `  K ) )
1911, 2, 4, 5polpmapN 30101 . . 3  |-  ( ( K  e.  HL  /\  ( ( oc `  K ) `  ( U `  X )
)  e.  ( Base `  K ) )  -> 
(  ._|_  `  ( M `  ( ( oc `  K ) `  ( U `  X )
) ) )  =  ( M `  (
( oc `  K
) `  ( ( oc `  K ) `  ( U `  X ) ) ) ) )
2018, 19syldan 456 . 2  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
(  ._|_  `  ( M `  ( ( oc `  K ) `  ( U `  X )
) ) )  =  ( M `  (
( oc `  K
) `  ( ( oc `  K ) `  ( U `  X ) ) ) ) )
2111, 2opococ 29385 . . . 4  |-  ( ( K  e.  OP  /\  ( U `  X )  e.  ( Base `  K
) )  ->  (
( oc `  K
) `  ( ( oc `  K ) `  ( U `  X ) ) )  =  ( U `  X ) )
229, 16, 21syl2anc 642 . . 3  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( ( oc `  K ) `  (
( oc `  K
) `  ( U `  X ) ) )  =  ( U `  X ) )
2322fveq2d 5529 . 2  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
( M `  (
( oc `  K
) `  ( ( oc `  K ) `  ( U `  X ) ) ) )  =  ( M `  ( U `  X )
) )
247, 20, 233eqtrd 2319 1  |-  ( ( K  e.  HL  /\  X  C_  A )  -> 
(  ._|_  `  (  ._|_  `  X ) )  =  ( M `  ( U `  X )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    C_ wss 3152   ` cfv 5255   Basecbs 13148   occoc 13216   lubclub 14076   CLatccla 14213   OPcops 29362   Atomscatm 29453   HLchlt 29540   pmapcpmap 29686   _|_ PcpolN 30091
This theorem is referenced by:  2polssN  30104  3polN  30105  sspmaplubN  30114  2pmaplubN  30115  paddunN  30116  pnonsingN  30122  pmapidclN  30131  poml4N  30142
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-pmap 29693  df-polarityN 30092
  Copyright terms: Public domain W3C validator