Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ralbida Structured version   Unicode version

Theorem 2ralbida 2744
 Description: Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 24-Feb-2004.)
Hypotheses
Ref Expression
2ralbida.1
2ralbida.2
2ralbida.3
Assertion
Ref Expression
2ralbida
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   (,)   (,)   ()   (,)

Proof of Theorem 2ralbida
StepHypRef Expression
1 2ralbida.1 . 2
2 2ralbida.2 . . . 4
3 nfv 1629 . . . 4
42, 3nfan 1846 . . 3
5 2ralbida.3 . . . 4
65anassrs 630 . . 3
74, 6ralbida 2719 . 2
81, 7ralbida 2719 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359  wnf 1553   wcel 1725  wral 2705 This theorem is referenced by:  2ralbidva  2745 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-11 1761 This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551  df-nf 1554  df-ral 2710
 Copyright terms: Public domain W3C validator