MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ralunsn Unicode version

Theorem 2ralunsn 3832
Description: Double restricted quantification over the union of a set and a singleton, using implicit substitution. (Contributed by Paul Chapman, 17-Nov-2012.)
Hypotheses
Ref Expression
2ralunsn.1  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
2ralunsn.2  |-  ( y  =  B  ->  ( ph 
<->  ps ) )
2ralunsn.3  |-  ( x  =  B  ->  ( ps 
<->  th ) )
Assertion
Ref Expression
2ralunsn  |-  ( B  e.  C  ->  ( A. x  e.  ( A  u.  { B } ) A. y  e.  ( A  u.  { B } ) ph  <->  ( ( A. x  e.  A  A. y  e.  A  ph 
/\  A. x  e.  A  ps )  /\  ( A. y  e.  A  ch  /\  th ) ) ) )
Distinct variable groups:    x, A    x, B, y    x, C    ch, x    ps, y    th, x
Allowed substitution hints:    ph( x, y)    ps( x)    ch( y)    th( y)    A( y)    C( y)

Proof of Theorem 2ralunsn
StepHypRef Expression
1 2ralunsn.2 . . . 4  |-  ( y  =  B  ->  ( ph 
<->  ps ) )
21ralunsn 3831 . . 3  |-  ( B  e.  C  ->  ( A. y  e.  ( A  u.  { B } ) ph  <->  ( A. y  e.  A  ph  /\  ps ) ) )
32ralbidv 2576 . 2  |-  ( B  e.  C  ->  ( A. x  e.  ( A  u.  { B } ) A. y  e.  ( A  u.  { B } ) ph  <->  A. x  e.  ( A  u.  { B } ) ( A. y  e.  A  ph  /\  ps ) ) )
4 2ralunsn.1 . . . . . 6  |-  ( x  =  B  ->  ( ph 
<->  ch ) )
54ralbidv 2576 . . . . 5  |-  ( x  =  B  ->  ( A. y  e.  A  ph  <->  A. y  e.  A  ch ) )
6 2ralunsn.3 . . . . 5  |-  ( x  =  B  ->  ( ps 
<->  th ) )
75, 6anbi12d 691 . . . 4  |-  ( x  =  B  ->  (
( A. y  e.  A  ph  /\  ps ) 
<->  ( A. y  e.  A  ch  /\  th ) ) )
87ralunsn 3831 . . 3  |-  ( B  e.  C  ->  ( A. x  e.  ( A  u.  { B } ) ( A. y  e.  A  ph  /\  ps )  <->  ( A. x  e.  A  ( A. y  e.  A  ph  /\  ps )  /\  ( A. y  e.  A  ch  /\  th ) ) ) )
9 r19.26 2688 . . . 4  |-  ( A. x  e.  A  ( A. y  e.  A  ph 
/\  ps )  <->  ( A. x  e.  A  A. y  e.  A  ph  /\  A. x  e.  A  ps ) )
109anbi1i 676 . . 3  |-  ( ( A. x  e.  A  ( A. y  e.  A  ph 
/\  ps )  /\  ( A. y  e.  A  ch  /\  th ) )  <-> 
( ( A. x  e.  A  A. y  e.  A  ph  /\  A. x  e.  A  ps )  /\  ( A. y  e.  A  ch  /\  th ) ) )
118, 10syl6bb 252 . 2  |-  ( B  e.  C  ->  ( A. x  e.  ( A  u.  { B } ) ( A. y  e.  A  ph  /\  ps )  <->  ( ( A. x  e.  A  A. y  e.  A  ph  /\  A. x  e.  A  ps )  /\  ( A. y  e.  A  ch  /\  th ) ) ) )
123, 11bitrd 244 1  |-  ( B  e.  C  ->  ( A. x  e.  ( A  u.  { B } ) A. y  e.  ( A  u.  { B } ) ph  <->  ( ( A. x  e.  A  A. y  e.  A  ph 
/\  A. x  e.  A  ps )  /\  ( A. y  e.  A  ch  /\  th ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556    u. cun 3163   {csn 3653
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-v 2803  df-sbc 3005  df-un 3170  df-sn 3659
  Copyright terms: Public domain W3C validator