Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2reu5lem2 Structured version   Unicode version

Theorem 2reu5lem2 3140
 Description: Lemma for 2reu5 3142. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
2reu5lem2
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,)   ()   ()

Proof of Theorem 2reu5lem2
StepHypRef Expression
1 df-rmo 2713 . . 3
21ralbii 2729 . 2
3 df-ral 2710 . . 3
4 moanimv 2339 . . . . . 6
54bicomi 194 . . . . 5
6 3anass 940 . . . . . . 7
76bicomi 194 . . . . . 6
87mobii 2317 . . . . 5
95, 8bitri 241 . . . 4
109albii 1575 . . 3
113, 10bitri 241 . 2
122, 11bitri 241 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   w3a 936  wal 1549   wcel 1725  wmo 2282  wral 2705  wrmo 2708 This theorem is referenced by:  2reu5lem3  3141 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-ral 2710  df-rmo 2713
 Copyright terms: Public domain W3C validator